4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systemic Parathyroid Hormone Enhances Fracture Healing in Multiple Murine Models of Type 2 Diabetes Mellitus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Type 2 diabetes mellitus (T2DM) is a multisystemic disease that afflicts more than 415 million people globally—the incidence and prevalence of T2DM continues to rise. It is well‐known that T2DM has detrimental effects on bone quality that increase skeletal fragility, which predisposes subjects to an increased risk of fracture and fracture healing that results in non‐ or malunion. Diabetics have been found to have perturbations in metabolism, hormone production, and calcium homeostasis—particularly PTH expression—that contribute to the increased risk of fracture and decreased fracture healing. Given the perturbations in PTH expression and the establishment of hPTH (1–34) for use in age‐related osteoporosis, it was determined logical to attempt to ameliorate the bone phenotype found in T2DM using hPTH (1–34). Therefore, the present study had two aims: (i) to establish a suitable murine model of the skeletal fragility present in T2DM because no current consensus model exists; and (ii) to determine the effects of hPTH (1–34) on bone fractures in T2DM. The results of the present study suggest that the polygenic mouse of T2DM, TALLYHO/JngJ, most accurately recapitulates the diabetic osteoporotic phenotype seen in humans and that the intermittent systemic administration of hPTH (1–34) increases fracture healing in T2DM murine models by increasing the proliferation of mesenchymal stem cells. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis.

          Once-daily injections of parathyroid hormone or its amino-terminal fragments increase bone formation and bone mass without causing hypercalcemia, but their effects on fractures are unknown. We randomly assigned 1637 postmenopausal women with prior vertebral fractures to receive 20 or 40 microg of parathyroid hormone (1-34) or placebo, administered subcutaneously by the women daily. We obtained vertebral radiographs at base line and at the end of the study (median duration of observation, 21 months) and performed serial measurements of bone mass by dual-energy x-ray absorptiometry. New vertebral fractures occurred in 14 percent of the women in the placebo group and in 5 percent and 4 percent, respectively, of the women in the 20-microg and 40-microg parathyroid hormone groups; the respective relative risks of fracture in the 20-microg and 40-microg groups, as compared with the placebo group, were 0.35 and 0.31 (95 percent confidence intervals, 0.22 to 0.55 and 0.19 to 0.50). New nonvertebral fragility fractures occurred in 6 percent of the women in the placebo group and in 3 percent of those in each parathyroid hormone group (relative risk, 0.47 and 0.46, respectively [95 percent confidence intervals, 0.25 to 0.88 and 0.25 to 0.861). As compared with placebo, the 20-microg and 40-microg doses of parathyroid hormone increased bone mineral density by 9 and 13 more percentage points in the lumbar spine and by 3 and 6 more percentage points in the femoral neck; the 40-microg dose decreased bone mineral density at the shaft of the radius by 2 more percentage points. Both doses increased total-body bone mineral by 2 to 4 more percentage points than did placebo. Parathyroid hormone had only minor side effects (occasional nausea and headache). Treatment of postmenopausal osteoporosis with parathyroid hormone (1-34) decreases the risk of vertebral and nonvertebral fractures; increases vertebral, femoral, and total-body bone mineral density; and is well tolerated. The 40-microg dose increased bone mineral density more than the 20-microg dose but had similar effects on the risk of fracture and was more likely to have side effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biology of fracture healing.

            The biology of fracture healing is a complex biological process that follows specific regenerative patterns and involves changes in the expression of several thousand genes. Although there is still much to be learned to fully comprehend the pathways of bone regeneration, the over-all pathways of both the anatomical and biochemical events have been thoroughly investigated. These efforts have provided a general understanding of how fracture healing occurs. Following the initial trauma, bone heals by either direct intramembranous or indirect fracture healing, which consists of both intramembranous and endochondral bone formation. The most common pathway is indirect healing, since direct bone healing requires an anatomical reduction and rigidly stable conditions, commonly only obtained by open reduction and internal fixation. However, when such conditions are achieved, the direct healing cascade allows the bone structure to immediately regenerate anatomical lamellar bone and the Haversian systems without any remodelling steps necessary. In all other non-stable conditions, bone healing follows a specific biological pathway. It involves an acute inflammatory response including the production and release of several important molecules, and the recruitment of mesenchymal stem cells in order to generate a primary cartilaginous callus. This primary callus later undergoes revascularisation and calcification, and is finally remodelled to fully restore a normal bone structure. In this article we summarise the basic biology of fracture healing. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture.

              The authors conducted a systematic review of published data on the association between diabetes mellitus and fracture. The authors searched MEDLINE through June 2006 and examined the reference lists of pertinent articles (limited to studies in humans). Summary relative risks and 95% confidence intervals were calculated with a random-effects model. The 16 eligible studies (two case-control studies and 14 cohort studies) included 836,941 participants and 139,531 incident cases of fracture. Type 2 diabetes was associated with an increased risk of hip fracture in both men (summary relative risk (RR) = 2.8, 95% confidence interval (CI): 1.2, 6.6) and women (summary RR = 2.1, 95% CI: 1.6, 2.7). Results were consistent between studies of men and women and between studies conducted in the United States and Europe. The association between type of diabetes and hip fracture incidence was stronger for type 1 diabetes (summary RR = 6.3, 95% CI: 2.6, 15.1) than for type 2 diabetes (summary RR = 1.7, 95% CI: 1.3, 2.2). Type 2 diabetes was weakly associated with fractures at other sites, and most effect estimates were not statistically significant. These findings strongly support an association between both type 1 and type 2 diabetes and increased risk of hip fracture in men and women.
                Bookmark

                Author and article information

                Contributors
                francis.lee@yale.edu
                Journal
                JBMR Plus
                JBMR Plus
                10.1002/(ISSN)2473-4039
                JBM4
                JBMR Plus
                John Wiley & Sons, Inc. (Hoboken, USA )
                2473-4039
                02 April 2020
                May 2020
                : 4
                : 5 ( doiID: 10.1002/jbm4.v4.5 )
                : e10359
                Affiliations
                [ 1 ] Department of Orthopædics & Rehabilitation Yale University, School of Medicine New Haven CT USA
                [ 2 ] Department of Life Science Chung‐Ang University Seoul Republic of Korea
                Author notes
                [*] [* ]Address correspondence to: Francis Y Lee, MD, PhD, Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 330 Cedar St, TMP 523 PO Box 208071, New Haven, CT 06520‐8071, USA. E‐mail: francis.lee@ 123456yale.edu
                Author information
                https://orcid.org/0000-0003-2275-2441
                Article
                JBM410359
                10.1002/jbm4.10359
                7202418
                32382692
                c185800e-99ad-493b-be80-dcd1f40db372
                © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 03 January 2020
                : 28 February 2020
                : 07 March 2020
                Page count
                Figures: 8, Tables: 0, Pages: 12, Words: 8892
                Funding
                Funded by: Musculoskeletal Transplant Foundation , open-funder-registry 10.13039/100001765;
                Funded by: National Institutes of Health , open-funder-registry 10.13039/100000002;
                Award ID: R01AR056246
                Award ID: R01AR073607
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                May 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.1 mode:remove_FC converted:06.05.2020

                diabetic osteoporosis,fracture healing,orthopedic trauma,parathyroid hormone,type 2 diabetes

                Comments

                Comment on this article