37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Alectinib versus crizotinib in patients with ALK -positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alectinib, a potent, highly selective, CNS-active inhibitor of anaplastic lymphoma kinase (ALK), showed promising efficacy and tolerability in the single-arm phase 1/2 AF-001JP trial in Japanese patients with ALK-positive non-small-cell lung cancer. Given those promising results, we did a phase 3 trial to directly compare the efficacy and safety of alectinib and crizotinib.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.

          Despite the success of tyrosine kinase-based cancer therapeutics, for most solid tumors the tyrosine kinases that drive disease remain unknown, limiting our ability to identify drug targets and predict response. Here we present the first large-scale survey of tyrosine kinase activity in lung cancer. Using a phosphoproteomic approach, we characterize tyrosine kinase signaling across 41 non-small cell lung cancer (NSCLC) cell lines and over 150 NSCLC tumors. Profiles of phosphotyrosine signaling are generated and analyzed to identify known oncogenic kinases such as EGFR and c-Met as well as novel ALK and ROS fusion proteins. Other activated tyrosine kinases such as PDGFRalpha and DDR1 not previously implicated in the genesis of NSCLC are also identified. By focusing on activated cell circuitry, the approach outlined here provides insight into cancer biology not available at the chromosomal and transcriptional levels and can be applied broadly across all human cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            First-line crizotinib versus chemotherapy in ALK-positive lung cancer.

            The efficacy of the ALK inhibitor crizotinib as compared with standard chemotherapy as first-line treatment for advanced ALK-positive non-small-cell lung cancer (NSCLC) is unknown. We conducted an open-label, phase 3 trial comparing crizotinib with chemotherapy in 343 patients with advanced ALK-positive nonsquamous NSCLC who had received no previous systemic treatment for advanced disease. Patients were randomly assigned to receive oral crizotinib at a dose of 250 mg twice daily or to receive intravenous chemotherapy (pemetrexed, 500 mg per square meter of body-surface area, plus either cisplatin, 75 mg per square meter, or carboplatin, target area under the curve of 5 to 6 mg per milliliter per minute) every 3 weeks for up to six cycles. Crossover to crizotinib treatment after disease progression was permitted for patients receiving chemotherapy. The primary end point was progression-free survival as assessed by independent radiologic review. Progression-free survival was significantly longer with crizotinib than with chemotherapy (median, 10.9 months vs. 7.0 months; hazard ratio for progression or death with crizotinib, 0.45; 95% confidence interval [CI], 0.35 to 0.60; P<0.001). Objective response rates were 74% and 45%, respectively (P<0.001). Median overall survival was not reached in either group (hazard ratio for death with crizotinib, 0.82; 95% CI, 0.54 to 1.26; P=0.36); the probability of 1-year survival was 84% with crizotinib and 79% with chemotherapy. The most common adverse events with crizotinib were vision disorders, diarrhea, nausea, and edema, and the most common events with chemotherapy were nausea, fatigue, vomiting, and decreased appetite. As compared with chemotherapy, crizotinib was associated with greater reduction in lung cancer symptoms and greater improvement in quality of life. Crizotinib was superior to standard first-line pemetrexed-plus-platinum chemotherapy in patients with previously untreated advanced ALK-positive NSCLC. (Funded by Pfizer; PROFILE 1014 ClinicalTrials.gov number, NCT01154140.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer.

              Improvement in the clinical outcome of lung cancer is likely to be achieved by identification of the molecular events that underlie its pathogenesis. Here we show that a small inversion within chromosome 2p results in the formation of a fusion gene comprising portions of the echinoderm microtubule-associated protein-like 4 (EML4) gene and the anaplastic lymphoma kinase (ALK) gene in non-small-cell lung cancer (NSCLC) cells. Mouse 3T3 fibroblasts forced to express this human fusion tyrosine kinase generated transformed foci in culture and subcutaneous tumours in nude mice. The EML4-ALK fusion transcript was detected in 6.7% (5 out of 75) of NSCLC patients examined; these individuals were distinct from those harbouring mutations in the epidermal growth factor receptor gene. Our data demonstrate that a subset of NSCLC patients may express a transforming fusion kinase that is a promising candidate for a therapeutic target as well as for a diagnostic molecular marker in NSCLC.
                Bookmark

                Author and article information

                Journal
                The Lancet
                The Lancet
                Elsevier BV
                01406736
                July 2017
                July 2017
                : 390
                : 10089
                : 29-39
                Article
                10.1016/S0140-6736(17)30565-2
                28501140
                c1944ac5-6fad-4da7-8563-69aa5ac9fa4c
                © 2017

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article