69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing

      ,
      Nature Reviews Molecular Cell Biology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references191

          • Record: found
          • Abstract: found
          • Article: found

          The Hallmarks of Aging

          Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biomolecular condensates: organizers of cellular biochemistry

            In addition to membrane-bound organelles, eukaryotic cells feature various membraneless compartments, including the centrosome, the nucleolus and various granules. Many of these compartments form through liquid–liquid phase separation, and the principles, mechanisms and regulation of their assembly as well as their cellular functions are now beginning to emerge.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Liquid phase condensation in cell physiology and disease.

              Phase transitions are ubiquitous in nonliving matter, and recent discoveries have shown that they also play a key role within living cells. Intracellular liquid-liquid phase separation is thought to drive the formation of condensed liquid-like droplets of protein, RNA, and other biomolecules, which form in the absence of a delimiting membrane. Recent studies have elucidated many aspects of the molecular interactions underlying the formation of these remarkable and ubiquitous droplets and the way in which such interactions dictate their material properties, composition, and phase behavior. Here, we review these exciting developments and highlight key remaining challenges, particularly the ability of liquid condensates to both facilitate and respond to biological function and how their metastability may underlie devastating protein aggregation diseases.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Nature Reviews Molecular Cell Biology
                Nat Rev Mol Cell Biol
                Springer Science and Business Media LLC
                1471-0072
                1471-0080
                January 28 2021
                Article
                10.1038/s41580-020-00326-6
                33510441
                c194f36d-9b2b-4d60-94b3-ad1556e6505a
                © 2021

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article