+1 Recommend
2 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights from 100 Years of Research with Probiotic E. Coli


      European Journal of Microbiology & Immunology

      Akadémiai Kiadó

      probiotics, Escherichia coli, Nissle, Symbioflor, human studies, applications

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          A century ago, Alfred Nissle discovered that intentional intake of particular strains of Escherichia coli could treat patients suffering from infectious diseases. Since then, one of these strains became the most frequently used probiotic E. coli in research and was applied to a variety of human conditions. Here, properties of that E. coli Nissle 1917 strain are compared with other commercially available E. coli probiotic strains, with emphasis on their human applications. A literature search formed the basis of a summary of research findings reported for the probiotics Mutaflor, Symbioflor 2, and Colinfant. The closest relatives of the strains in these products are presented, and their genetic content, including the presence of virulence, genes is discussed. A similarity to pathogenic strains causing urinary tract infections is noticeable. Historic trends in research of probiotics treatment for particular human conditions are identified. The future of probiotic E. coli may lay in what Alfred Nissle originally discovered: to treat gastrointestinal infections, which nowadays are often caused by antibiotic-resistant pathogens.

          Related collections

          Most cited references 116

          • Record: found
          • Abstract: found
          • Article: not found

          The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota.

          Bacterial culture was the first method used to describe the human microbiota, but this method is considered outdated by many researchers. Metagenomics studies have since been applied to clinical microbiology; however, a "dark matter" of prokaryotes, which corresponds to a hole in our knowledge and includes minority bacterial populations, is not elucidated by these studies. By replicating the natural environment, environmental microbiologists were the first to reduce the "great plate count anomaly," which corresponds to the difference between microscopic and culture counts. The revolution in bacterial identification also allowed rapid progress. 16S rRNA bacterial identification allowed the accurate identification of new species. Mass spectrometry allowed the high-throughput identification of rare species and the detection of new species. By using these methods and by increasing the number of culture conditions, culturomics allowed the extension of the known human gut repertoire to levels equivalent to those of pyrosequencing. Finally, taxonogenomics strategies became an emerging method for describing new species, associating the genome sequence of the bacteria systematically. We provide a comprehensive review on these topics, demonstrating that both empirical and hypothesis-driven approaches will enable a rapid increase in the identification of the human prokaryote repertoire.
            • Record: found
            • Abstract: found
            • Article: not found

            Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they?

            Avian pathogenic Escherichia coli (APEC), uropathogenic E. coli (UPEC), and newborn meningitis-causing E. coli (NMEC) establish infections in extraintestinal habitats (extraintestinal pathogenic E. coli; ExPEC) of different hosts. As diversity, epidemiological sources, and evolutionary origins of ExPEC are so far only partially defined, we screened a collection of 526 strains of medical and veterinary origin of various O-types for assignment to E. coli reference collection (ECOR) group and virulence gene patterns. Results of ECOR typing confirmed that human ExPEC strains mostly belong to groups B2, followed by group D. Although a considerable portion of APEC strains did also fell into ECOR group B2 (35.1%), a higher amount (46.1%) belonged to group A, which has previously been described to also harbour strains with a high pathogenic potential for humans. The number of virulence-associated genes of single strains ranged from 5 to 26 among 33 genes tested and high numbers were rather related to K1-positive and ECOR B2 strains than to a certain pathotype. With a few exceptions (iha, afa/draB, sfa/foc, and hlyA), which were rarely present in APEC strains, most chromosomally located genes were widely distributed among all ExPEC strains irrespective of host and pathotype. However, prevalence of invasion genes (ibeA and gimB) and K1 capsule-encoding gene neuC indicated a closer relationship between APEC and NMEC strains. Genes associated with ColV plasmids (tsh, iss, and the episomal sit locus) were in general more prevalent in APEC than in UPEC and NMEC strains, indicating that APEC could be a source of ColV-located genes or complete plasmids for other ExPEC strains. Our data support the hypothesis that (a) poultry may be a vehicle or even a reservoir for human ExPEC strains, (b) APEC potentially serve as a reservoir of virulence-associated genes for UPEC and NMEC, (c) some ExPEC strains, although of different pathotypes, may share common ancestors, and (d) as a conclusion certain APEC subgroups have to be considered potential zoonotic agents. The finding of different evolutionary clusters within these three pathotypes implicates an independently and parallel evolution, which should be resolved in the future by thorough phylogenetic typing.
              • Record: found
              • Abstract: found
              • Article: not found

              Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron.

              Host inflammation alters the availability of nutrients such as iron to limit microbial growth. However, Salmonella enterica serovar Typhimurium thrives in the inflamed gut by scavenging for iron with siderophores. By administering Escherichia coli strain Nissle 1917, which assimilates iron by similar mechanisms, we show that this nonpathogenic bacterium can outcompete and reduce S. Typhimurium colonization in mouse models of acute colitis and chronic persistent infection. This probiotic activity depends on E. coli Nissle iron acquisition, given that mutants deficient in iron uptake colonize the intestine but do not reduce S. Typhimurium colonization. Additionally, the ability of E. coli Nissle to overcome iron restriction by the host protein lipocalin 2, which counteracts some siderophores, is essential, given that S. Typhimurium is unaffected by E. coli Nissle in lipocalin 2-deficient mice. Thus, iron availability impacts S. Typhimurium growth, and E. coli Nissle reduces S. Typhimurium intestinal colonization by competing for this limiting nutrient. Copyright © 2013 Elsevier Inc. All rights reserved.

                Author and article information

                Eur J Microbiol Immunol (Bp)
                Eur J Microbiol Immunol (Bp)
                European Journal of Microbiology & Immunology
                Akadémiai Kiadó (Budapest )
                29 September 2016
                29 September 2016
                : 6
                : 3
                : 147-161
                Molecular Microbiology and Genomics Consultants , Tannenstrasse 7, 55576 Zotzenheim, Germany
                Author notes
                * Molecular Microbiology and Genomics Consultants, Tannenstrasse 7, D-55576 Zotzenheim, Germany; +49 6701 8531; Trudy@ 123456mmgc.eu

                Conflict of interest

                The author works as a consultant for SymbioPharm GmbH.

                © The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 107, Pages: 15
                Founding sources SymbioPharm GmbH provided financial support to write this review; however, it had no influence on the content of the article.


                Comment on this article