152
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs

      research-article
      , 1 , *
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transfer RNAs (tRNAs) and small nucleolar RNAs (snoRNAs) are two of the largest classes of non-protein-coding RNAs. Conventional gene finders that detect protein-coding genes do not find tRNA and snoRNA genes because they lack the codon structure and statistical signatures of protein-coding genes. Previously, we developed tRNAscan-SE, snoscan and snoGPS for the detection of tRNAs, methylation-guide snoRNAs and pseudouridylation-guide snoRNAs, respectively. tRNAscan-SE is routinely applied to completed genomes, resulting in the identification of thousands of tRNA genes. Snoscan has successfully detected methylation-guide snoRNAs in a variety of eukaryotes and archaea, and snoGPS has identified novel pseudouridylation-guide snoRNAs in yeast and mammals. Although these programs have been quite successful at RNA gene detection, their use has been limited by the need to install and configure the software packages on UNIX workstations. Here, we describe online implementations of these RNA detection tools that make these programs accessible to a wider range of research biologists. The tRNAscan-SE, snoscan and snoGPS servers are available at http://lowelab.ucsc.edu/tRNAscan-SE/, http://lowelab.ucsc.edu/snoscan/ and http://lowelab.ucsc.edu/snoGPS/, respectively.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          A computational screen for methylation guide snoRNAs in yeast.

          Small nucleolar RNAs (snoRNAs) are required for ribose 2'-O-methylation of eukaryotic ribosomal RNA. Many of the genes for this snoRNA family have remained unidentified in Saccharomyces cerevisiae, despite the availability of a complete genome sequence. Probabilistic modeling methods akin to those used in speech recognition and computational linguistics were used to computationally screen the yeast genome and identify 22 methylation guide snoRNAs, snR50 to snR71. Gene disruptions and other experimental characterization confirmed their methylation guide function. In total, 51 of the 55 ribose methylated sites in yeast ribosomal RNA were assigned to 41 different guide snoRNAs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Homologs of small nucleolar RNAs in Archaea.

            In eukaryotes, dozens of posttranscriptional modifications are directed to specific nucleotides in ribosomal RNAs (rRNAs) by small nucleolar RNAs (snoRNAs). We identified homologs of snoRNA genes in both branches of the Archaea. Eighteen small sno-like RNAs (sRNAs) were cloned from the archaeon Sulfolobus acidocaldarius by coimmunoprecipitation with archaeal fibrillarin and NOP56, the homologs of eukaryotic snoRNA-associated proteins. We trained a probabilistic model on these sRNAs to search for more sRNAs in archaeal genomic sequences. Over 200 additional sRNAs were identified in seven archaeal genomes representing both the Crenarchaeota and the Euryarchaeota. snoRNA-based rRNA processing was therefore probably present in the last common ancestor of Archaea and Eukarya, predating the evolution of a morphologically distinct nucleolus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse.

              In mouse brain cDNA libraries generated from small RNA molecules we have identified a total of 201 different expressed RNA sequences potentially encoding novel small non-messenger RNA species (snmRNAs). Based on sequence and structural motifs, 113 of these RNAs can be assigned to the C/D box or H/ACA box subclass of small nucleolar RNAs (snoRNAs), known as guide RNAs for rRNA. While 30 RNAs represent mouse homologues of previously identified human C/D or H/ACA snoRNAs, 83 correspond to entirely novel snoRNAS: Among these, for the first time, we identified four C/D box snoRNAs and four H/ACA box snoRNAs predicted to direct modifications within U2, U4 or U6 small nuclear RNAs (snRNAs). Furthermore, 25 snoRNAs from either class lacked antisense elements for rRNAs or snRNAS: Therefore, additional snoRNA targets have to be considered. Surprisingly, six C/D box snoRNAs and one H/ACA box snoRNA were expressed exclusively in brain. Of the 88 RNAs not belonging to either snoRNA subclass, at least 26 are probably derived from truncated heterogeneous nuclear RNAs (hnRNAs) or mRNAS: Short interspersed repetitive elements (SINEs) are located on five RNA sequences and may represent rare examples of transcribed SINES: The remaining RNA species could not as yet be assigned either to any snmRNA class or to a part of a larger hnRNA/mRNA. It is likely that at least some of the latter will represent novel, unclassified snmRNAS:
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                01 July 2005
                01 July 2005
                27 June 2005
                : 33
                : Web Server issue
                : W686-W689
                Affiliations
                Department of Biomolecular Engineering and the UCSC RNA Center, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
                1Division of Biological Sciences, Cell and Developmental Biology Section and Center for Molecular Genetics, University of California at San Diego La Jolla, CA 92093, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +1 831 459 1511; Fax: +1 831 459 3139; Email: lowe@ 123456soe.ucsc.edu

                Correspondence may also be addressed to Peter Schattner. Email: schattner@ 123456soe.ucsc.edu

                Article
                10.1093/nar/gki366
                1160127
                15980563
                c1ad8cf3-ce3f-424a-8d34-3942544acc97
                © The Author 2005. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oupjournals.org

                History
                : 12 January 2005
                : 28 February 2005
                : 28 February 2005
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article