28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multifaceted Roles of GSK-3 in Cancer and Autophagy-Related Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          GSK-3 is a ubiquitously expressed serine/threonine kinase existing as GSK-3 α and GSK-3 β isoforms, both active under basal conditions and inactivated upon phosphorylation by different upstream kinases. Initially discovered as a regulator of glycogen synthesis, GSK-3 is also involved in several signaling pathways controlling many different key functions. Here, we discuss recent advances regarding (i) GSK-3 structure, function, regulation, and involvement in several cancers, including hepatocarcinoma, cholangiocarcinoma, breast cancer, prostate cancer, leukemia, and melanoma (active GSK-3 has been shown to induce apoptosis in some cases or inhibit apoptosis in other cases and to induce cancer progression or inhibit tumor cell proliferation, suggesting that different GSK-3 modulators may address different specific targets); (ii) GSK-3 involvement in autophagy modulation, reviewing signaling pathways involved in neurodegenerative and liver diseases; (iii) GSK-3 role in oxidative stress and autophagic cell death, focusing on liver injury; (iv) GSK-3 as a possible therapeutic target of natural substances and synthetic inhibitors in many diseases; and (v) GSK-3 role as modulator of mammalian aging, related to metabolic alterations characterizing senescent cells and age-related diseases. Studies summarized here underline the GSK-3 multifaceted role and indicate such kinase as a molecular target in different pathologies, including diseases associated with autophagy dysregulation.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.

          Glycogen synthase kinase-3 (GSK3) is implicated in the regulation of several physiological processes, including the control of glycogen and protein synthesis by insulin, modulation of the transcription factors AP-1 and CREB, the specification of cell fate in Drosophila and dorsoventral patterning in Xenopus embryos. GSK3 is inhibited by serine phosphorylation in response to insulin or growth factors and in vitro by either MAP kinase-activated protein (MAPKAP) kinase-1 (also known as p90rsk) or p70 ribosomal S6 kinase (p70S6k). Here we show, however, that agents which prevent the activation of both MAPKAP kinase-1 and p70S6k by insulin in vivo do not block the phosphorylation and inhibition of GSK3. Another insulin-stimulated protein kinase inactivates GSK3 under these conditions, and we demonstrate that it is the product of the proto-oncogene protein kinase B (PKB, also known as Akt/RAC). Like the inhibition of GSK3 (refs 10, 14), the activation of PKB is prevented by inhibitors of phosphatidylinositol (PI) 3-kinase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth.

            Mutation in the TSC2 tumor suppressor causes tuberous sclerosis complex, a disease characterized by hamartoma formation in multiple tissues. TSC2 inhibits cell growth by acting as a GTPase-activating protein toward Rheb, thereby inhibiting mTOR, a central controller of cell growth. Here, we show that Wnt activates mTOR via inhibiting GSK3 without involving beta-catenin-dependent transcription. GSK3 inhibits the mTOR pathway by phosphorylating TSC2 in a manner dependent on AMPK-priming phosphorylation. Inhibition of mTOR by rapamycin blocks Wnt-induced cell growth and tumor development, suggesting a potential therapeutic value of rapamycin for cancers with activated Wnt signaling. Our results show that, in addition to transcriptional activation, Wnt stimulates translation and cell growth by activating the TSC-mTOR pathway. Furthermore, the sequential phosphorylation of TSC2 by AMPK and GSK3 reveals a molecular mechanism of signal integration in cell growth regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The renaissance of GSK3.

              Glycogen synthase kinase 3 (GSK3) was initially described as a key enzyme involved in glycogen metabolism, but is now known to regulate a diverse array of cell functions. The study of the substrate specificity and regulation of GSK3 activity has been important in the quest for therapeutic intervention.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2017
                12 December 2017
                : 2017
                : 4629495
                Affiliations
                1Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
                2Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome “Foro Italico”, Rome, Italy
                3Istituto Dermopatico dell'Immacolata Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS, FLMM), Rome, Italy
                Author notes

                Academic Editor: Maria C. Albertini

                Author information
                http://orcid.org/0000-0001-7283-4977
                http://orcid.org/0000-0002-8776-3515
                http://orcid.org/0000-0002-5025-5365
                Article
                10.1155/2017/4629495
                5742885
                29379583
                c1b078ea-6f17-4003-b1b5-b6ee5b59bce7
                Copyright © 2017 Romina Mancinelli et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 July 2017
                : 7 October 2017
                : 23 October 2017
                Funding
                Funded by: Italian Ministry of Health
                Award ID: RC2015-3.4
                Funded by: Ricerca Scientifica Sapienza
                Award ID: FILAS-RU-2014-1020
                Funded by: Fondazione Roma
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article