14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SATB1 and SATB2 play opposing roles in c-Myc expression and progression of colorectal cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Special AT-rich sequence-binding protein 1 and 2 (SATB1/2) are nuclear matrix-associated proteins involved in chromatin remodeling and regulation of gene expression. SATB2 acts as a tumor suppressor in laryngeal squamous cell carcinoma and colon cancer, whereas SATB1 promotes the progression of numerous types of cancers. In this study, we examined the effects of SATB1 and SATB2 on the malignant characteristics of colorectal cancer cells. SATB1 and SATB2 expression were negatively correlated in colorectal cancer specimens. SATB1 expression was increased, whereas SATB2 expression was reduced, in colorectal cancer tissues compared to control tissues. Exogenous expression of SATB2 in colorectal cancer cells suppressed cell proliferation, colony formation and tumor proliferation in mice. c-Myc was reduced by SATB2 expression, and exogenous expression of c-Myc in SATB2-expressing cells restored proliferation, colony formation and in vivo tumor growth of colorectal cancer cells. We also showed that c-Myc reduction by SATB2 was mediated by the inactivation of ERK5. In contrast, SATB1 promoted c-Myc expression. The expression of SATB1 in colorectal cancer tissues was positively correlated with c-Myc expression, and SATB1 knockdown reduced c-Myc expression in colorectal cancer cells. Finally, we showed that SATB1 knockdown in colorectal cancer cells suppressed cell proliferation, colony formation and cell invasion. Our results reveal interesting features of how the structural homologs SATB1 and SATB2 exert opposing functions in colorectal tumorigenesis.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Repression of p15INK4b expression by Myc through association with Miz-1.

          Deregulated expression of c-myc can induce cell proliferation in established cell lines and in primary mouse embryonic fibroblasts (MEFs), through a combination of both transcriptional activation and repression by Myc. Here we show that a Myc-associated transcription factor, Miz-1, arrests cells in G1 phase and inhibits cyclin D-associated kinase activity. Miz-1 upregulates expression of the cyclin-dependent kinases (CDK) inhibitor p15INK4b by binding to the initiator element of the p15INK4b promoter. Myc and Max form a complex with Miz-1 at the p15 initiator and inhibit transcriptional activation by Miz-1. Expression of Myc in primary cells inhibits the accumulation of p15INK4b that is associated with cellular senescence; conversely, deletion of c-myc in an established cell line activates p15INK4b expression. Alleles of c-myc that are unable to bind to Miz-1 fail to inhibit accumulation of p15INK4b messenger RNA in primary cells and are, as a consequence, deficient in immortalization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Small Molecules Targeting c-Myc Oncogene: Promising Anti-Cancer Therapeutics

            The nuclear transcription factor c-Myc is a member of the Myc gene family with multiple functions and located on band q24.1 of chromosome 8. The c-Myc gene is activated by chromosomal translocation, rearrangement, and amplification. Its encoded protein transduces intracellular signals to the nucleus, resulting in the regulation of cell proliferation, differentiation, and apoptosis, and has the ability to transform cells and bind chromosomal DNA. c-Myc also plays a critical role in malignant transformation. The abnormal over-expression of c-Myc is frequently observed in some tumors, including carcinomas of the breast, colon, and cervix, as well as small-cell lung cancer, osteosarcomas, glioblastomas, and myeloid leukemias, therefore making it a possible target for anticancer therapy. In this minireview, we summarize unique characteristics of c-Myc and therapeutic strategies against cancer using small molecules targeting the oncogene, and discuss the prospects in the development of agents targeting c-Myc, in particular G-quadruplexes formed in c-Myc promoter and c-Myc/Max dimerization. Such information will be of importance for the research and development of c-Myc-targeted drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of cellular functions by the ERK5 signalling pathway.

              Extracellular-regulated protein kinase 5 (ERK5) is a mitogen-activated protein kinase (MAPK) regulated by a wide range of mitogens and cellular stresses. Since its cloning in 1995, the lack of biological tools, including antibodies and specific inhibitors, have made it one of the least studied MAPK subfamilies. The discovery that ERK5 was an important contributor to cell survival mechanisms has increased interest in this signalling pathway. The ability of inhibitors of the classical MAPK (ERK1/2) cascade to block ERK5 activation suggested that ERK5 might regulate some cellular functions originally attributed to ERK1/2. For example, ERK5 is suspected to mediate the effects of numerous oncogenes. A link between abnormal levels of ERK5 expression and cancers was established by the analysis of human tumours. Recently, the targeted deletions of the erk5 and the mek5 genes in mice have provided genetic evidence that the ERK5 cascade is a non-redundant signalling pathway essential for normal cardiovascular development. The analysis of genetically modified mice in which the erk5 gene can be specifically deleted in certain tissues is shedding light into the physiological function of the ERK5 pathway during development and pathogenesis.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                26 January 2016
                18 December 2015
                : 7
                : 4
                : 4993-5006
                Affiliations
                1 Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan
                2 Biochemistry Section, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
                3 Department of Surgical Oncology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan
                Author notes
                Correspondence to: Mohammed A. Mansour, biomansour@ 123456hotmail.com
                Article
                6651
                10.18632/oncotarget.6651
                4826260
                26701851
                c1b4f4ff-87c3-4f01-b46d-6c9b96fccb7a
                Copyright: © 2016 Mansour et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 August 2015
                : 5 December 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                colorectal cancer,satb2,c-myc,satb1
                Oncology & Radiotherapy
                colorectal cancer, satb2, c-myc, satb1

                Comments

                Comment on this article