18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      FRBCAT: The Fast Radio Burst Catalogue

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here, we present a catalogue of known Fast Radio Burst sources in the form of an online catalogue, FRBCAT. The catalogue includes information about the instrumentation used for the observations for each detected burst, the measured quantities from each observation, and model-dependent quantities derived from observed quantities. To aid in consistent comparisons of burst properties such as width and signal-to-noise ratios, we have re-processed all the bursts for which we have access to the raw data, with software which we make available. The originally derived properties are also listed for comparison. The catalogue is hosted online as a Mysql database which can also be downloaded in tabular or plain text format for off-line use. This database will be maintained for use by the community for studies of the Fast Radio Burst population as it grows.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A bright millisecond radio burst of extragalactic origin

          Pulsar surveys offer one of the few opportunities to monitor even a small fraction (~0.00001) of the radio sky for impulsive burst-like events with millisecond durations. In analysis of archival survey data, we have discovered a 30-Jy dispersed burst of duration <5 ms located three degrees from the Small Magellanic Cloud. The burst properties argue against a physical association with our Galaxy or the Small Magellanic Cloud. Current models for the free electron content in the Universe imply a distance to the burst of <1 Gpc No further bursts are seen in 90-hr of additional observations, implying that it was a singular event such as a supernova or coalescence of relativistic objects. Hundreds of similar events could occur every day and act as insightful cosmological probes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Population of Fast Radio Bursts at Cosmological Distances

            Searches for transient astrophysical sources often reveal unexpected classes of objects that are useful physical laboratories. In a recent survey for pulsars and fast transients we have uncovered four millisecond-duration radio transients all more than 40{\deg} from the Galactic plane. The bursts' properties indicate that they are of celestial rather than terrestrial origin. Host galaxy and intergalactic medium models suggest that they have cosmological redshifts of 0.5 to 1, and distances of up to 3 gigaparsecs. No temporally coincident x- or gamma-ray signature was identified in association with the bursts. Characterization of the source population and identification of host galaxies offers an opportunity to determine the baryonic content of the Universe.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Repeating Fast Radio Burst

              Fast Radio Bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measures (i.e. integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of the fast radio bursts has led several authors to hypothesise that they originate in cataclysmic astrophysical events. Here we report the detection of ten additional bursts from the direction of FRB121102, using the 305-m Arecibo telescope. These new bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or shorter. While there may be multiple physical origins for the population of fast radio bursts, the repeat bursts with high dispersion measure and variable spectra specifically seen from FRB121102 support models that propose an origin in a young, highly magnetised, extragalactic neutron star.
                Bookmark

                Author and article information

                Journal
                applab
                Publications of the Astronomical Society of Australia
                Publ. Astron. Soc. Aust.
                Cambridge University Press (CUP)
                1323-3580
                1448-6083
                2016
                September 9 2016
                : 33
                :
                Article
                10.1017/pasa.2016.35
                c1be2acb-08f9-4ef4-8217-be47651ab934
                © 2016
                History

                Comments

                Comment on this article