54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Generation of 3D Skin Equivalents Fully Reconstituted from Human Induced Pluripotent Stem Cells (iPSCs)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent generation of patient-specific induced pluripotent stem cells (PS-iPSCs) provides significant advantages for cell- and gene-based therapy. Establishment of iPSC-based therapy for skin diseases requires efficient methodology for differentiating iPSCs into both keratinocytes and fibroblasts, the major cellular components of the skin, as well as the reconstruction of skin structures using these iPSC-derived skin components. We previously reported generation of keratinocytes from human iPSCs for use in the treatment of recessive dystrophic epidermolysis bullosa (RDEB) caused by mutations in the COL7A1 gene. Here, we developed a protocol for differentiating iPSCs into dermal fibroblasts, which also produce type VII collagen and therefore also have the potential to treat RDEB. Moreover, we generated in vitro 3D skin equivalents composed exclusively human iPSC-derived keratinocytes and fibroblasts for disease models and regenerative therapies for skin diseases, first demonstrating that iPSCs can provide the basis for modeling a human organ derived entirely from two different types of iPSC-derived cells.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Embryonic stem cell differentiation: emergence of a new era in biology and medicine.

          The discovery of mouse embryonic stem (ES) cells >20 years ago represented a major advance in biology and experimental medicine, as it enabled the routine manipulation of the mouse genome. Along with the capacity to induce genetic modifications, ES cells provided the basis for establishing an in vitro model of early mammalian development and represented a putative new source of differentiated cell types for cell replacement therapy. While ES cells have been used extensively for creating mouse mutants for more than a decade, their application as a model for developmental biology has been limited and their use in cell replacement therapy remains a goal for many in the field. Recent advances in our understanding of ES cell differentiation, detailed in this review, have provided new insights essential for establishing ES cell-based developmental models and for the generation of clinically relevant populations for cell therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity.

            We have identified a stromal cell-derived inducing activity (SDIA) that promotes neural differentiation of mouse ES cells. SDIA accumulates on the surface of PA6 stromal cells and induces efficient neuronal differentiation of cocultured ES cells in serum-free conditions without use of either retinoic acid or embryoid bodies. BMP4, which acts as an antineuralizing morphogen in Xenopus, suppresses SDIA-induced neuralization and promotes epidermal differentiation. A high proportion of tyrosine hydroxylase-positive neurons producing dopamine are obtained from SDIA-treated ES cells. When transplanted, SDIA-induced dopaminergic neurons integrate into the mouse striatum and remain positive for tyrosine hydroxylase expression. Neural induction by SDIA provides a new powerful tool for both basic neuroscience research and therapeutic applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells.

              We report here homologous recombination (HR)-mediated gene targeting of two different genes in human iPS cells (hiPSCs) and human ES cells (hESCs). HR-mediated correction of a chromosomally integrated mutant GFP reporter gene reaches efficiencies of 0.14%-0.24% in both cell types transfected by donor DNA with plasmids expressing zinc finger nucleases (ZFNs). Engineered ZFNs that induce a sequence-specific double-strand break in the GFP gene enhanced HR-mediated correction by > 1400-fold without detectable alterations in stem cell karyotypes or pluripotency. Efficient HR-mediated insertional mutagenesis was also achieved at the endogenous PIG-A locus, with a > 200-fold enhancement by ZFNs targeted to that gene. Clonal PIG-A null hESCs and iPSCs with normal karyotypes were readily obtained. The phenotypic and biological defects were rescued by PIG-A transgene expression. Our study provides the first demonstration of HR-mediated gene targeting in hiPSCs and shows the power of ZFNs for inducing specific genetic modifications in hiPSCs, as well as hESCs.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                11 October 2013
                : 8
                : 10
                : e77673
                Affiliations
                [1 ]Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
                [2 ]Department of Genetics & Development, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
                University of Maryland School of Medicine, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MI AMC. Performed the experiments: MI NU ZG LL CAH. Analyzed the data: MI NU. Contributed reagents/materials/analysis tools: MI NU ZG. Wrote the manuscript: MI AMC.

                [¤]

                Current address: Department of Dermatology, the Jikei University School of Medicine, Tokyo, Japan

                Article
                PONE-D-13-17268
                10.1371/journal.pone.0077673
                3795682
                24147053
                c1c3e795-b29c-4939-835a-f37c965f1520
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 April 2013
                : 5 September 2013
                Funding
                This work was supported in part by the Dr. Ines Mandl Research Fellowship (Columbia University), and grants from NYSTAR (The New York State Foundation for Science, Technology and Innovation), SDH C024321 (New York State Stem Cell Science), U18TR000561-01 (As part of Tissue Chip Awards from National Institutes of Health/National Center for Advancing Translational Sciences) and Helmsley Stem Cell Starter Grants (Columbia University). This work was supported by the Core facilities of the Skin Disease Research Center at Columbia University (P30AR044535 from NIH/NIAMS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article