7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Categorías del Razonamiento Intuitivo y Teoría de las Situaciones Didácticas: una perspectiva sobre la intuición y el razonamiento matemático Translated title: Categorias do Raciocínio Intuitivo e Teoria das Si tuações Didáticas: uma perspectiva sobre a intuição e o raciocínio matemático Translated title: Categories of Intuitive Reasoning and Theory of Didactic Situa tions: a perspective on intuition and mathematical reasoning

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resumen Este trabajo tiene como objetivo discutir la asociación entre la intuición y el razo- namiento matemático, asociándolos a través del prisma de las Categorías del Razo- namiento Intuitivo y la Teoría de las Situaciones Didácticas. Mientras tanto, proponemos una discusión teórica considerando la influencia de diferentes formas de manifestación de la intuición en el aprendizaje de las Matemáticas. La metodología utilizada para estructurar este trabajo fue la investigación bibliográfica, a través de un análisis de contenido, a partir de obras que de alguna manera abordan la intuición y el razonamiento en sus diferentes niveles. Como resultado, traemos una correlación en- tre los niveles de razonamiento propuestos por Brousseau y Gibel y la categorización de la intuición presentada por Efraim Fischbein, buscando exponer convergencias y/o similitudes entre los dos marcos teóricos. Creemos que la intuición, como facultad ontológica y punto de confluencia entre la Didáctica de las Matemáticas y la Psicología cognitiva, a través de las teorías dilucidadas en este trabajo, es un vasto campo por explorar y tiene el potencial de sumar al trabajo de los profesores de matemáticas.

          Translated abstract

          Resumo Este trabalho tem como objetivo discorrer sobre a associação entre a intuição e o raciocínio matemático, associando-os pelo prisma das Categorias do Raciocí- nio Intuitivo e da Teoria das Situações Didáticas. Nesse ínterim, propomos uma discussão teórica considerando a influência de distintas formas de manifestação da intuição no aprendizado em Matemática. A metodologia utilizada para estruturar este trabalho foi a pesquisa bibliográfica, por meio de uma análise de conteúdo, a partir de obras que abordam de algum modo a intuição e o raciocínio em seus diferentes níveis. Como resultado, trazemos uma correlação entre os níveis de raciocínio propostos por Brousseau e Gibel e a categorização da intuição apresentada por Efraim Fischbein, buscando expor convergências e/ou similaridades entre os dois quadros teóricos. Consideramos que a intuição, enquanto faculdade ontológica e ponto de confluência entre a Didática da Matemática e à Psicologia Cognitiva, por meio das teorias elucidadas neste trabalho, é um vasto campo a ser explorado e tem potencial para agregar ao trabalho do professor de matemática.

          Translated abstract

          ABSTRACT The objective of this work is to discuss the association between intuition and mathematical reasoning, associating them through the prism of the Categories of Intuitive Reasoning and the Theory of Didactic Situations. A theoretical discussion is proposed, considering the influence of different forms of the manifestation of intuition in lear- ning in Mathematics. The methodology used to structure this work was the bibliographic research, through a content analysis, from works which somehow approach intuition and reasoning at different levels. As a result, a correlation is identified between the levels of reasoning proposed by Brousseau and Gibel and the categorization of intuition presented by Efraim Fischbein, seeking to expose convergences and/or similarities between the two theoretical frameworks. It is considered that intuition, as an ontological faculty and point of confluence between Didactics of Mathematics and Cognitive Psychology, through the theories discussed in this work, is a vast field to be explored with a potential to contribute to the work of the mathematics teacher.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Integration of the cognitive and the psychodynamic unconscious.

          M Epstein (1994)
          Cognitive-experiential self-theory integrates the cognitive and the psychodynamic unconscious by assuming the existence of two parallel, interacting modes of information processing: a rational system and an emotionally driven experiential system. Support for the theory is provided by the convergence of a wide variety of theoretical positions on two similar processing modes; by real-life phenomena--such as conflicts between the heart and the head; the appeal of concrete, imagistic, and narrative representations; superstitious thinking; and the ubiquity of religion throughout recorded history--and by laboratory research, including the prediction of new phenomena in heuristic reasoning.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Database Models and Managerial Intuition: 50% Model + 50% Manager

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intuition: a social cognitive neuroscience approach.

              This review proposes that implicit learning processes are the cognitive substrate of social intuition. This hypothesis is supported by (a) the conceptual correspondence between implicit learning and social intuition (nonverbal communication) and (b) a review of relevant neuropsychological (Huntington's and Parkinson's disease), neuroimaging, neurophysiological, and neuroanatomical data. It is concluded that the caudate and putamen, in the basal ganglia, are central components of both intuition and implicit learning, supporting the proposed relationship. Parallel, but distinct, processes of judgment and action are demonstrated at each of the social, cognitive, and neural levels of analysis. Additionally, explicit attempts to learn a sequence can interfere with implicit learning. The possible relevance of the computations of the basal ganglia to emotional appraisal, automatic evaluation, script processing, and decision making are discussed.
                Bookmark

                Author and article information

                Journal
                rexe
                Revista de estudios y experiencias en educación
                Rev. estud. exp. educ.
                Universidad Católica de la Santísima Concepción. Facultad de Educación. (Concepción, , Chile )
                0718-5162
                August 2023
                : 22
                : 49
                : 284-302
                Affiliations
                [2] Sobral orgnameUniversidade Es tadual Vale do Acaraú Brasil mazesobral@ 123456yahoo.com.br
                [1] Fortaleza orgnameInstituto Federal de Educação, Ciência e Tecnologia do Ceará Brasil fregis@ 123456ifce.edu.br
                Article
                S0718-51622023000200284 S0718-5162(23)02204900284
                10.21703/rexe.v22i49.1456
                c1e1a9a3-358c-465f-b971-1f93e370fd64

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

                History
                : 21 April 2022
                : 17 March 2023
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 36, Pages: 19
                Product

                SciELO Chile

                Categories
                Debate

                razonamiento,in- tuición,enseñanza de las matemáticas,Didáctica de las matemáticas,Didactics of mathematics,cognitive psychology,reasoning,intuition,tea ching mathematics,psicología cognitiva,ensino de matemática,intuição,raciocínio,psicologia cognitiva,Didática da matemática

                Comments

                Comment on this article