61
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This manuscript reviews the application of atomic layer deposition (ALD) for perovskite solar cells exploring also novel opportunities and the challenges that research has to face to deposit ALD layers on perovskite films.

          Abstract

          Atomic layer deposition is widely acknowledged as a powerful technique for the deposition of high quality layers for several applications including photovoltaics (PV). The capability of ALD to generate dense, conformal, virtually pinhole-free layers becomes attractive also for the emerging organo-metal halide perovskite solar cells (PSCs), which have garnered the interest of the PV community through their remarkable efficiency gains, now over 20%, in just a few years of research. Until now, the application of ALD layers in PSCs has almost exclusively been restricted to the stages of device fabrication prior to perovskite deposition. Researchers have mainly focused on fabricating efficient electron and hole transport layers (TiO 2, SnO 2, ZnO, NiO) and ultra-thin Al 2O 3 or TiO 2 passivation layers for several device configurations. The first section of this contribution reviews the current state-of-the-art ALD for perovskite solar cells. Then, we explore other potential opportunities, such as the fabrication of doped metal oxide selective contacts and transparent electrodes, also for use in tandem solar cell architectures, as well as barrier layers for encapsulation. Finally, we present our own experimental investigation of the challenges involved in depositing directly on perovskite absorbers in view of replacing organic electron and hole transport layers with ALD metal oxides (MOs). Therefore, the effects of temperature, oxidizing agents and metal precursors on perovskite are studied. A number of insights are gained which can lead to the development of ad hoc ALD processes that are compatible with the underlying perovskite, in this case, methylammonium lead iodide, MAPbI 3. The phase purity and surface chemistry of the perovskite were used as metrics to quantify the feasibility of depositing selected MOs which can be adopted as selective contacts and passivation layers.

          Related collections

          Most cited references174

          • Record: found
          • Abstract: not found
          • Article: not found

          Atomic layer deposition: an overview.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers.

            The recent dramatic rise in power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) has triggered intense research worldwide. However, high PCE values have often been reached with poor stability at an illuminated area of typically less than 0.1 square centimeter. We used heavily doped inorganic charge extraction layers in planar PSCs to achieve very rapid carrier extraction, even with 10- to 20-nanometer-thick layers, avoiding pinholes and eliminating local structural defects over large areas. The robust inorganic nature of the layers allowed for the fabrication of PSCs with an aperture area >1 square centimeter that have a PCE >15%, as certified by an accredited photovoltaic calibration laboratory. Hysteresis in the current-voltage characteristics was eliminated; the PSCs were stable, with >90% of the initial PCE remaining after 1000 hours of light soaking.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance.

              Solar cells based on organometallic halide perovskite absorber layers are emerging as a high-performance photovoltaic technology. Using highly sensitive photothermal deflection and photocurrent spectroscopy, we measure the absorption spectrum of CH3NH3PbI3 perovskite thin films at room temperature. We find a high absorption coefficient with particularly sharp onset. Below the bandgap, the absorption is exponential over more than four decades with an Urbach energy as small as 15 meV, which suggests a well-ordered microstructure. No deep states are found down to the detection limit of ∼1 cm(-1). These results confirm the excellent electronic properties of perovskite thin films, enabling the very high open-circuit voltages reported for perovskite solar cells. Following intentional moisture ingress, we find that the absorption at photon energies below 2.4 eV is strongly reduced, pointing to a compositional change of the material.
                Bookmark

                Author and article information

                Journal
                SEFUA7
                Sustainable Energy & Fuels
                Sustainable Energy Fuels
                Royal Society of Chemistry (RSC)
                2398-4902
                2017
                2017
                : 1
                : 1
                : 30-55
                Affiliations
                [1 ]Department of Applied Physics
                [2 ]Eindhoven University of Technology
                [3 ]5600 MB Eindhoven
                [4 ]The Netherlands
                [5 ]Solliance – Holst Centre
                [6 ]5656 AE Eindhoven
                [7 ]Philips Innovation Labs
                Article
                10.1039/C6SE00076B
                c1eb31d2-3c2a-423f-b711-759027415958
                © 2017
                History

                Comments

                Comment on this article