10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms of a ring shaped helicase

      research-article
      , *
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacteriophage T7 helicase (T7 gene 4 helicase-primase) is a prototypical member of the ring-shaped family of helicases, whose structure and biochemical mechanisms have been studied in detail. T7 helicase assembles into a homohexameric ring that binds single-stranded DNA in its central channel. Using RecA-type nucleotide binding and sensing motifs, T7 helicase binds and hydrolyzes several NTPs, among which dTTP supports optimal protein assembly, DNA binding and unwinding activities. During translocation along single stranded DNA, the subunits of the ring go through dTTP hydrolysis cycles one at a time, and this probably occurs also during DNA unwinding. Interestingly, the unwinding speed of T7 helicase is an order of magnitude slower than its translocation rate along single stranded DNA. The slow unwinding rate is greatly stimulated when DNA synthesis by T7 DNA polymerase is coupled to DNA unwinding. Using the T7 helicase as an example, we highlight critical findings and discuss possible mechanisms of helicase action.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria.

          In the crystal structure of bovine mitochondrial F1-ATPase determined at 2.8 A resolution, the three catalytic beta-subunits differ in conformation and in the bound nucleotide. The structure supports a catalytic mechanism in intact ATP synthase in which the three catalytic subunits are in different states of the catalytic cycle at any instant. Interconversion of the states may be achieved by rotation of the alpha 3 beta 3 subassembly relative to an alpha-helical domain of the gamma-subunit.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thermodynamics and kinetics of a Brownian motor.

            Nonequilibrium fluctuations, whether generated externally or by a chemical reaction far from equilibrium, can bias the Brownian motion of a particle in an anisotropic medium without thermal gradients, a net force such as gravity, or a macroscopic electric field. Fluctuation-driven transport is one mechanism by which chemical energy can directly drive the motion of particles and macromolecules and may find application in a wide variety of fields, including particle separation and the design of molecular motors and pumps.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution.

              DNA polymerases change their specificity for nucleotide substrates with each catalytic cycle, while achieving error frequencies in the range of 10(-5) to 10(-6). Here we present a 2.2 A crystal structure of the replicative DNA polymerase from bacteriophage T7 complexed with a primer-template and a nucleoside triphosphate in the polymerase active site. The structure illustrates how nucleotides are selected in a template-directed manner, and provides a structural basis for a metal-assisted mechanism of phosphoryl transfer by a large group of related polymerases.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                September 2006
                September 2006
                25 August 2006
                : 34
                : 15
                : 4216-4224
                Affiliations
                Department of Biochemistry, UMDNJ, Robert Wood Johnson Medical School 675 Hoes Lane, Piscataway, NJ 08854, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +1 732 235 3372; Fax: +1 732 235 4739; Email: patelss@ 123456umdnj.edu
                Article
                10.1093/nar/gkl508
                1616965
                16935879
                c1eb5938-d91b-40db-9d9b-46afbca9c94e
                © 2006 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 01 April 2006
                : 01 July 2006
                : 03 July 2006
                Categories
                Survey and Summary

                Genetics
                Genetics

                Comments

                Comment on this article