4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Omega-3 Fatty Acids Prevent Post-Traumatic Stress Disorder-Induced Memory Impairment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Post-traumatic stress disorder (PTSD) is a psychiatric disorder that can happen after exposure to a traumatic event. Post-traumatic stress disorder is common among mental health disorders that include mood and anxiety disorders. Omega-3 fatty acids (OMGs) are essential for the maintenance of brain function and prevention of cognition dysfunctions. However, the possible effect of OMG on memory impairment induced by PTSD has not been studied. In here, such an effect was explored using a rat model of PTSD. The PTSD-like behavior was induced in animals using a single-prolonged stress (SPS) rat model of PTSD (2 h restraint, 20 min forced swimming, 15 min rest, 1–2 min diethyl ether exposure). The OMG was administered orally at a dose of 100 mg omega-3 polyunsaturated fatty acid (PUFA)/100 g body weight/day. Spatial learning and memory were assessed using the radial arm water maze (RAWM) method. Changes in oxidative stress biomarkers, thiobarbituric acid reactive substances (TBARS), and brain derived neuroptrophic factor (BDNF) in the hippocampus following treatments were measured. The results revealed that SPS impaired both short- and long-term memory ( p < 0.05). Use of OMG prevented memory impairment induced by SPS. Furthermore, OMG normalized SPS induced changes in the hippocampus that reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratios, the activity of catalase, glutathione peroxidase (GPx), and TBARSs levels. In conclusion, the SPS model of PTSD-like behavior generated memory impairment, whereas OMG prevented this impairment, possibly through normalizing antioxidant mechanisms in the hippocampus.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats.

          Omega-3 fatty acids (i.e., docosahexaenoic acid; DHA) regulate signal transduction and gene expression, and protect neurons from death. In this study we examined the capacity of dietary omega3 fatty acids supplementation to help the brain to cope with the effects of traumatic injury. Rats were fed a regular diet or an experimental diet supplemented with omega-3 fatty acids, for 4 weeks before a mild fluid percussion injury (FPI) was performed. FPI increased oxidative stress, and impaired learning ability in the Morris water maze. This type of lesion also reduced levels of brain-derived neurotrophic factor (BDNF), synapsin I, and cAMP responsive element-binding protein (CREB). It is known that BDNF facilitates synaptic transmission and learning ability by modulating synapsin I and CREB. Supplementation of omega-3 fatty acids in the diet counteracted all of the studied effects of FPI, that is, normalized levels of BDNF and associated synapsin I and CREB, reduced oxidative damage, and counteracted learning disability. The reduction of oxidative stress indicates a benevolent effect of this diet on mechanisms that maintain neuronal function and plasticity. These results imply that omega-3 enriched dietary supplements can provide protection against reduced plasticity and impaired learning ability after traumatic brain injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress.

            In the present study, we have examined the behavioral and biochemical effect of induction of psychological stress using a modified version of the resident-intruder model for social stress (social defeat). At the end of the social defeat protocol, body weights, food and water intake were recorded, depression and anxiety-like behaviors as well as memory function was examined. Biochemical analysis including oxidative stress measurement, inflammatory markers and other molecular parameters, critical to behavioral effects were examined. We observed a significant decrease in the body weight in the socially defeated rats as compared to the controls. Furthermore, social defeat increased anxiety-like behavior and caused memory impairment in rats (P<0.05). Socially defeated rats made significantly more errors in long term memory tests (P<0.05) as compared to control rats. Furthermore, brain extracellular signal-regulated kinase-1/2 (ERK1/2), and an inflammatory marker, interleukin (IL)-6 were activated (P<0.05), while the protein levels of glyoxalase (GLO)-1, glutathione reductase (GSR)-1, calcium/calmodulin-dependent protein kinase type (CAMK)-IV, cAMP-response-element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were significantly less (P<0.05) in the hippocampus, but not in the prefrontal cortex and amygdala of socially defeated rats, when compared to control rats. We suggest that social defeat stress alters ERK1/2, IL-6, GLO1, GSR1, CAMKIV, CREB, and BDNF levels in specific brain areas, leading to oxidative stress-induced anxiety-depression-like behaviors and as well as memory impairment in rats. © 2013 Published by Elsevier B.V.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women.

              Low dietary intake of docosahexaenoic acid (DHA) and/or foods rich in lutein may be associated with increased risk of cognitive decline in the elderly. The cognitive benefit of DHA and lutein in unimpaired elder women was explored in the context of a 4-month, double-blind, intervention trial of DHA and lutein supplementation for eye health. Forty-nine women (aged 60-80 years) were randomized to receive DHA (800 mg/day; n = 14), lutein (12 mg/day; n = 11), a combination of DHA and lutein (n = 14) or placebo (n = 10). Subjects underwent cognitive tests measuring verbal fluency, memory, processing speed and accuracy, and self-reports of mood at randomization and upon completion of the trial. Following supplementation, verbal fluency scores improved significantly in the DHA, lutein, and combined treatment groups (P < 0.03). Memory scores and rate of learning improved significantly in the combined treatment group (P < 0.03), who also displayed a trend toward more efficient learning (P = 0.07). Measures of mental processing speed, accuracy and mood were not affected by supplementation. These exploratory findings suggest that DHA and lutein supplementation may have cognitive benefit for older adults.
                Bookmark

                Author and article information

                Journal
                Biomolecules
                Biomolecules
                biomolecules
                Biomolecules
                MDPI
                2218-273X
                12 March 2019
                March 2019
                : 9
                : 3
                : 100
                Affiliations
                [1 ]Department of Biological Sciences, School of Science, University of Jordan, Amman 11942, Jordan; layaliq@ 123456yu.edu.jo (L.A.); hana.hammad@ 123456gmail.com (H.H.); Suzie.rababah@ 123456bau.edu.jo (S.Y.R.)
                [2 ]Department of Biology, Yarmouk University, Irbid 21163, Jordan
                [3 ]Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; famayyas@ 123456just.edu.jo
                [4 ]Department of Medical Science, Irbid Faculty, Al-Balqa Applied University, Irbid 21110, Jordan
                Author notes
                [* ]Correspondence: khalzoubi@ 123456just.edu.jo ; Tel.: +962-2-7201000/ext. 23521; Fax: +962-2-7201075
                Author information
                https://orcid.org/0000-0002-2808-5099
                Article
                biomolecules-09-00100
                10.3390/biom9030100
                6468674
                30871113
                c1f119af-8094-4ecc-b67a-633ec796af14
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 January 2019
                : 08 March 2019
                Categories
                Article

                omega-3 fatty acids,post-traumatic traumatic stress,memory,single-prolonged stress,learning,oxidative stress,maze

                Comments

                Comment on this article