81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Corneal Allograft Rejection: Immunopathogenesis to Therapeutics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Corneal transplantation is among the most successful solid organ transplants. However, despite low rejection rates of grafts in the ‘low-risk’ setting, rejection can be as high as 70% when grafted into ‘high-risk’ recipient beds. Under normal homeostatic conditions, the avascular cornea provides a unique environment that facilitates immune and angiogenic privilege. An imbalance in pro-inflammatory, angiogenic and lymphangiogenic mediators leads to a breakdown in corneal immune privilege with a consequent host response against the donor graft. Recent developments in lamellar and endothelial keratoplasties have reduced the rates of graft rejection even more, while providing improved visual outcomes. The corneal layer against which an immune response is initiated, largely determines reversibility of the acute episode. While epithelial and stromal graft rejection may be treated with topical corticosteroids with higher success, acute endothelial rejection mandates a more aggressive approach to therapy due to the lack of regenerative capacity of this layer. However, current immunosuppressive regimens come with the caveat of ocular and systemic side effects, making prolonged aggressive treatment undesirable. With the advent of biologics, efficacious therapies with a superior side effect profile are on the horizon. In our review we discuss the mediators of ocular immune privilege, the roles of cellular and molecular immune players in graft rejection, with a focus on human leukocyte antigen and antigen presenting cells. Furthermore, we discuss the clinical risk factors for graft rejection and compare rates of rejection in lamellar and endothelial keratoplasties to traditional penetrating keratoplasty. Lastly, we present the current and upcoming measures of therapeutic strategies to manage and treat graft rejection, including an overview of biologics and small molecule therapy.

          Related collections

          Most cited references185

          • Record: found
          • Abstract: found
          • Article: not found

          A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.

          Interleukin 17 (IL-17) has been linked to autoimmune diseases, although its regulation and function have remained unclear. Here we have evaluated in vitro and in vivo the requirements for the differentiation of naive CD4 T cells into effector T helper cells that produce IL-17. This process required the costimulatory molecules CD28 and ICOS but was independent of the cytokines and transcription factors required for T helper type 1 or type 2 differentiation. Furthermore, both IL-4 and interferon-gamma negatively regulated T helper cell production of IL-17 in the effector phase. In vivo, antibody to IL-17 inhibited chemokine expression in the brain during experimental autoimmune encephalomyelitis, whereas overexpression of IL-17 in lung epithelium caused chemokine production and leukocyte infiltration. Thus, IL-17 expression characterizes a unique T helper lineage that regulates tissue inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.

            We describe de novo generation of IL-17-producing T cells from naive CD4 T cells, induced in cocultures of naive CD4 T cells and naturally occurring CD4+ CD25+ T cells (Treg) in the presence of TLR3, TLR4, or TLR9 stimuli. Treg can be substituted by TGFbeta1, which, together with the proinflammatory cytokine IL-6, supports the differentiation of IL-17-producing T cells, a process that is amplified by IL-1beta and TNFalpha. We could not detect a role for IL-23 in the differentiation of IL-17-producing T cells but confirmed its importance for their survival and expansion. Transcription factors GATA-3 and T-bet, as well as its target Hlx, are absent in IL-17-producing T cells, and they do not express the negative regulator for TGFbeta signaling, Smad7. Our data indicate that, in the presence of IL-6, TGFbeta1 subverts Th1 and Th2 differentiation for the generation of IL-17-producing T cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The biological functions of T helper 17 cell effector cytokines in inflammation.

              T helper 17 (Th17) cells belong to a recently identified T helper subset, in addition to the traditional Th1 and Th2 subsets. These cells are characterized as preferential producers of interleukin-17A (IL-17A), IL-17F, IL-21, and IL-22. Th17 cells and their effector cytokines mediate host defensive mechanisms to various infections, especially extracellular bacteria infections, and are involved in the pathogenesis of many autoimmune diseases. The receptors for IL-17 and IL-22 are broadly expressed on various epithelial tissues. The effector cytokines of Th17 cells, therefore, mediate the crucial crosstalk between immune system and tissues, and play indispensable roles in tissue immunity.
                Bookmark

                Author and article information

                Journal
                101563152
                39420
                J Clin Cell Immunol
                J Clin Cell Immunol
                Journal of clinical & cellular immunology
                2155-9899
                7 March 2014
                20 November 2013
                14 March 2014
                : 2013
                : Suppl 9
                : 006
                Affiliations
                [1 ]Ocular Surface and Imaging Center & Cornea Service Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
                [2 ]Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
                Author notes
                [* ] Corresponding author: Pedram Hamrah, M.D., Assistant Professor, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA, Tel: +1-617-391-5865; Fax: +1-617-573-4300; pedram_hamrah@ 123456meei.harvard.edu
                Article
                NIHMS559678
                10.4172/2155-9899.S9-006
                3954811
                24634796
                c1f867e7-7b36-439f-abe9-800ea6548b33
                Copyright: © 2013 Qazi Y, et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Categories
                Article

                immune privilege,allograft rejection,antigen presenting cells,human leukocyte antigen,angiogenesis,lymphangiogenesis,keratoplasty,immune suppression

                Comments

                Comment on this article