16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Anticoagulant activities of curcumin and its derivative

      , ,
      BMB Reports
      Korean Society for Biochemistry and Molecular Biology - BMB Reports

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Curcumin, a polyphenol responsible for the yellow color of the curry spice turmeric, possesses antiinflammatory, antiproliferative and antiangiogenic activities. However, anticoagulant activities of curcumin have not been studied. Here, the anticoagulant properties of curcumin and its derivative (bisdemethoxycurcumin, BDMC) were determined by monitoring activated partial thromboplastin time (aPTT), prothrombin time (PT) as well as cell-based thrombin and activated factor X (FXa) generation activities. Data showed that curcumin and BDMC prolonged aPTT and PT significantly and inhibited thrombin and FXa activities. They inhibited the generation of thrombin or FXa. In accordance with these anticoagulant activities, curcumin and BDMC showed anticoagulant effect in vivo. Surprisingly, these anticoagulant effects of curcumin were better than those of BDMC indicating that methoxy group in curcumin positively regulated anticoagulant function of curcumin. Therefore, these results suggest that curcumin and BDMC possess antithrombotic activities and daily consumption of the curry spice turmeric might help maintain anticoagulant status.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Pharmacology of Curcuma longa.

          The data reviewed indicate that extracts of Curcuma longa exhibit anti-inflammatory activity after parenteral application in standard animal models used for testing anti-inflammatory activity. It turned out that curcumin and the volatile oil are at least in part responsible for this action. It appears that when given orally, curcumin is far less active than after i.p. administration. This may be due to poor absorption, as discussed. Data on histamine-induced ulcers are controversial, and studies on the secretory activity (HCl, pepsinogen) are still lacking. In vitro, curcumin exhibited antispasmodic activity. Since there was a protective effect of extracts of Curcuma longa on the liver and a stimulation of bile secretion in animals, Curcuma longa has been advocated for use in liver disorders. Evidence for an effect on liver disease in humans is not yet available. From the facts that after oral application only traces of curcumin were found in the blood and that, on the other hand, most of the curcumin is excreted via the faeces it may be concluded that curcumin is absorbed poorly by the gastrointestinal tract and/or underlies presystemic transformation. Systemic effects therefore seem to be questionable after oral application except that they occur at very low concentrations of curcumin. This does not exclude a local action in the gastrointestinal tract.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Platelets and thrombin generation.

            This review examines the evidence that platelets play a major role in localizing and controlling the burst of thrombin generation leading to fibrin clot formation. From the first functional description of platelets, it has been recognized that platelets supply factors that support the activation of prothrombin. Studies have demonstrated that on activation, the amount of one specific lipid, phosphatidylserine, is significantly increased on the outer leaflet of platelet membranes. When it was found that phosphatidylserine containing lipid extracts could be substituted for platelets in clotting assays, this suggested the possibility that changes in platelet lipid composition were necessary and sufficient to account for platelet surface thrombin generation. Because a growing body of data suggest that platelet-binding proteins provide much of the specificity for platelet thrombin generation, we review in this report data suggesting that changes in lipid composition are necessary but not sufficient to account for platelet surface regulation of thrombin generation. Also, we review data suggesting that platelets from different individuals differ in their capacity to generate thrombin, whereas platelets from a single subject support thrombin generation in a reproducible manner. Individual differences in platelet thrombin generation might be accounted for by differences in platelet-binding proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thrombus formation in vivo.

              To examine thrombus formation in a living mouse, new technologies involving intravital videomicroscopy have been applied to the analysis of vascular windows to directly visualize arterioles and venules. After vessel wall injury in the microcirculation, thrombus development can be imaged in real time. These systems have been used to explore the role of platelets, blood coagulation proteins, endothelium, and the vessel wall during thrombus formation. The study of biochemistry and cell biology in a living animal offers new understanding of physiology and pathology in complex biologic systems.
                Bookmark

                Author and article information

                Journal
                BMB Reports
                BMB Reports
                Korean Society for Biochemistry and Molecular Biology - BMB Reports
                1976-6696
                April 30 2012
                April 30 2012
                : 45
                : 4
                : 221-226
                Article
                10.5483/BMBRep.2012.45.4.221
                22531131
                c1f8e638-6229-4312-a1c4-5eb0be447a9e
                © 2012
                History

                Comments

                Comment on this article