40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The human stress response

      ,
      Nature Reviews Endocrinology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human stress response has evolved to maintain homeostasis under conditions of real or perceived stress. This objective is achieved through autoregulatory neural and hormonal systems in close association with central and peripheral clocks. The hypothalamic-pituitary-adrenal axis is a key regulatory pathway in the maintenance of these homeostatic processes. The end product of this pathway - cortisol - is secreted in a pulsatile pattern, with changes in pulse amplitude creating a circadian pattern. During acute stress, cortisol levels rise and pulsatility is maintained. Although the initial rise in cortisol follows a large surge in adrenocorticotropic hormone levels, if long-term inflammatory stress occurs, adrenocorticotropic hormone levels return to near basal levels while cortisol levels remain raised as a result of increased adrenal sensitivity. In chronic stress, hypothalamic activation of the pituitary changes from corticotropin-releasing hormone-dominant to arginine vasopressin-dominant, and cortisol levels remain raised due at least in part to decreased cortisol metabolism. Acute elevations in cortisol levels are beneficial to promoting survival of the fittest as part of the fight-or-flight response. However, chronic exposure to stress results in reversal of the beneficial effects, with long-term cortisol exposure becoming maladaptive, which can lead to a broad range of problems including the metabolic syndrome, obesity, cancer, mental health disorders, cardiovascular disease and increased susceptibility to infections. Neuroimmunoendocrine modulation in disease states and glucocorticoid-based therapeutics are also discussed.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk.

          We propose a model wherein chronic stress results in glucocorticoid receptor resistance (GCR) that, in turn, results in failure to down-regulate inflammatory response. Here we test the model in two viral-challenge studies. In study 1, we assessed stressful life events, GCR, and control variables including baseline antibody to the challenge virus, age, body mass index (BMI), season, race, sex, education, and virus type in 276 healthy adult volunteers. The volunteers were subsequently quarantined, exposed to one of two rhinoviruses, and followed for 5 d with nasal washes for viral isolation and assessment of signs/symptoms of a common cold. In study 2, we assessed the same control variables and GCR in 79 subjects who were subsequently exposed to a rhinovirus and monitored at baseline and for 5 d after viral challenge for the production of local (in nasal secretions) proinflammatory cytokines (IL-1β, TNF-α, and IL-6). Study 1: After covarying the control variables, those with recent exposure to a long-term threatening stressful experience demonstrated GCR; and those with GCR were at higher risk of subsequently developing a cold. Study 2: With the same controls used in study 1, greater GCR predicted the production of more local proinflammatory cytokines among infected subjects. These data provide support for a model suggesting that prolonged stressors result in GCR, which, in turn, interferes with appropriate regulation of inflammation. Because inflammation plays an important role in the onset and progression of a wide range of diseases, this model may have broad implications for understanding the role of stress in health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation.

            Two receptor systems for corticosterone (CORT) can be distinguished in rat brain: mineralocorticoid-like or CORT receptors (CR) and glucocorticoid receptors (GR). The microdistribution and extent of occupation of each receptor population by CORT were studied. The CR system is restricted predominantly to the lateral septum and hippocampus. Within the hippocampus, the highest density occurs in the subiculum +/- CA1 cell field (144 fmol/mg protein) and the dentate gyrus (104 fmol/mg protein). Affinity of CR for CORT was very high (Kd, approximately 0.5 nM). The GR system has a more widespread distribution in the brain. The highest density for GR is in the lateral septum (195 fmol/mg protein), the dentate gyrus (133 fmol/mg protein), the nucleus tractus solitarii and central amygdala. Substantial amounts of GR are present in the paraventricular nucleus and locus coeruleus and low amounts in the raphe area and the subiculum + CA1 cell field. The affinity of GR for CORT (Kd, approximately 2.5-5 nM) was 6- to 10-fold lower than that of CR. Occupation of CR by endogenous ligand was 89.5% during morning trough levels of pituitary-adrenal activity (plasma CORT, 1.4 micrograms/100 ml). Similar levels of occupation (88.7% and 97.6%) were observed at the diurnal peak (plasma CORT, 27 micrograms/100 ml) and after 1 h of restraint stress (plasma CORT, 25 micrograms/100 ml), respectively. Furthermore, a dose of 1 microgram CORT/100 g BW, sc, resulted in 80% CORT receptor occupation, whereas GR were not occupied. For 50% occupation of GR, doses needed to be increased to 50-100 micrograms/100 g BW, and for 95% occupation, a dose of 1 mg CORT was required. The plasma CORT level at the time of half-maximal GR occupation was about 25 micrograms/100 ml, which is in the range of levels attained after stress or during the diurnal peak of pituitary-adrenal activity. Thus, CR are extensively filled (greater than 90%) with endogenous CORT under most circumstances, while GR become occupied concurrent with increasing plasma CORT concentrations due to stress or diurnal rhythm. We conclude that CORT action via CR may be involved in a tonic (permissive) influence on brain function with the septohippocampal complex as a primary target. In view of the almost complete occupation of CR by endogenous hormones, the regulation of the CORT signal via CR will, most likely, be by alterations in the number of such receptors. In contrast, CORT action via GR is involved in its feedback action on stress-activated brain mechanisms, and GR occur widely in the brain.(ABSTRACT TRUNCATED AT 400 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chronic psychological stress and the regulation of pro-inflammatory cytokines: a glucocorticoid-resistance model.

              This study examined whether chronic stress impairs the immune system's capacity to respond to hormonal signals that terminate inflammation. Fifty healthy adults were studied; half were parents of cancer patients, and half were parents of healthy children. Parents of cancer patients reported more psychological distress than parents of healthy children. They also had flatter diurnal slopes of cortisol secretion, primarily because of reduced output during the morning hours. There was also evidence that chronic stress impaired the immune system's response to anti-inflammatory signals: The capacity of a synthetic glucocorticoid hormone to suppress in vitro production of the pro-inflammatory cytokine interleukin-6 was diminished among parents of cancer patients. Findings suggest a novel pathway by which chronic stress might alter the course of inflammatory disease.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Endocrinology
                Nat Rev Endocrinol
                Springer Science and Business Media LLC
                1759-5029
                1759-5037
                June 27 2019
                Article
                10.1038/s41574-019-0228-0
                31249398
                c1fdad38-df9d-4bb3-9a16-e3401ac88c23
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article