18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expression of Tight Junction Protein Claudin-1 in Human Crescentic Glomerulonephritis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The origin of crescent forming cells in human glomerulonephritis (GN) remains unknown. Some animal studies demonstrated that parietal epithelial cells of Bowman's capsule (PECs) were the main component of proliferating cells and PEC-specific tight junction protein claudin-1 was expressed in crescentic lesions. We investigated the expression of claudin-1 in human GN. Immunohistochemistry for claudin-1 was performed on 17 kidney biopsy samples with crescent formation. Colocalization of claudin-1 with intracellular tight junction protein ZO-1 was also evaluated by immunofluorescence double staining. Claudin-1 is expressed mainly at the cell to cell contact site of proliferating cells in cellular crescentic lesions in patients with these forms of human GN. Small numbers of crescent forming cells showed extrajunctional localization of claudin-1. Colocalization of claudin-1 with ZO-1 was found at cell to cell contact sites of adjacent proliferating cells. In control samples, staining of claudin-1 was positive in PECs, but not in podocytes. Our findings suggest that claudin-1 contributes to crescent formation as a component of the tight junction protein complex that includes ZO-1. Co-localization of claudin-1 with ZO-1 implies the formation of functional tight junction complexes in crescentic lesions to prevent the interstitial damage caused by penetration of filtered molecules from Bowman's space.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin

          Occludin is the only known integral membrane protein localizing at tight junctions (TJ), but recent targeted disruption analysis of the occludin gene indicated the existence of as yet unidentified integral membrane proteins in TJ. We therefore re-examined the isolated junction fraction from chicken liver, from which occludin was first identified. Among numerous components of this fraction, only a broad silver-stained band ∼22 kD was detected with the occludin band through 4 M guanidine-HCl extraction as well as sonication followed by stepwise sucrose density gradient centrifugation. Two distinct peptide sequences were obtained from the lower and upper halves of the broad band, and similarity searches of databases allowed us to isolate two full-length cDNAs encoding related mouse 22-kD proteins consisting of 211 and 230 amino acids, respectively. Hydrophilicity analysis suggested that both bore four transmembrane domains, although they did not show any sequence similarity to occludin. Immunofluorescence and immunoelectron microscopy revealed that both proteins tagged with FLAG or GFP were targeted to and incorporated into the TJ strand itself. We designated them as “claudin-1” and “claudin-2”, respectively. Although the precise structure/function relationship of the claudins to TJ still remains elusive, these findings indicated that multiple integral membrane proteins with four putative transmembrane domains, occludin and claudins, constitute TJ strands.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia

            A tight junction-enriched membrane fraction has been used as immunogen to generate a monoclonal antiserum specific for this intercellular junction. Hybridomas were screened for their ability to both react on an immunoblot and localize to the junctional complex region on frozen sections of unfixed mouse liver. A stable hybridoma line has been isolated that secretes an antibody (R26.4C) that localizes in thin section images of isolated mouse liver plasma membranes to the points of membrane contact at the tight junction. This antibody recognizes a polypeptide of approximately 225,000 D, detectable in whole liver homogenates as well as in the tight junction-enriched membrane fraction. R26.4C localizes to the junctional complex region of a number of other epithelia, including colon, kidney, and testis, and to arterial endothelium, as assayed by immunofluorescent staining of cryostat sections of whole tissue. This antibody also stains the junctional complex region in confluent monolayers of the Madin-Darby canine kidney epithelial cell line. Immunoblot analysis of Madin-Darby canine kidney cells demonstrates the presence of a polypeptide similar in molecular weight to that detected in liver, suggesting that this protein is potentially a ubiquitous component of all mammalian tight junctions. The 225-kD tight junction-associated polypeptide is termed "ZO-1."
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct Binding of Three Tight Junction-Associated Maguks, Zo-1, Zo-2, and Zo-3, with the Cooh Termini of Claudins

              ZO-1, ZO-2, and ZO-3, which contain three PDZ domains (PDZ1 to -3), are concentrated at tight junctions (TJs) in epithelial cells. TJ strands are mainly composed of two distinct types of four-transmembrane proteins, occludin, and claudins, between which occludin was reported to directly bind to ZO-1/ZO-2/ZO-3. However, in occludin-deficient intestinal epithelial cells, ZO-1/ZO-2/ZO-3 were still recruited to TJs. We then examined the possible interactions between ZO-1/ZO-2/ZO-3 and claudins. ZO-1, ZO-2, and ZO-3 bound to the COOH-terminal YV sequence of claudin-1 to -8 through their PDZ1 domains in vitro. Then, claudin-1 or -2 was transfected into L fibroblasts, which express ZO-1 but not ZO-2 or ZO-3. Claudin-1 and -2 were concentrated at cell–cell borders in an elaborate network pattern, to which endogenous ZO-1 was recruited. When ZO-2 or ZO-3 were further transfected, both were recruited to the claudin-based networks together with endogenous ZO-1. Detailed analyses showed that ZO-2 and ZO-3 are recruited to the claudin-based networks through PDZ2 (ZO-2 or ZO-3)/PDZ2 (endogenous ZO-1) and PDZ1 (ZO-2 or ZO-3)/COOH-terminal YV (claudins) interactions. In good agreement, PDZ1 and PDZ2 domains of ZO-1/ZO-2/ZO-3 were also recruited to claudin-based TJs, when introduced into cultured epithelial cells. The possible molecular architecture of TJ plaque structures is discussed.
                Bookmark

                Author and article information

                Journal
                Int J Nephrol
                Int J Nephrol
                IJN
                International Journal of Nephrology
                Hindawi Publishing Corporation
                2090-214X
                2090-2158
                2014
                27 April 2014
                : 2014
                : 598670
                Affiliations
                1Department of Nephrology, Dokkyo Medical University Koshigaya Hospital, No. 1-50, 2-Chome, Minami-Koshigaya, Koshigaya-shi, Saitama 343-8555, Japan
                2Department of Pathology, Dokkyo Medical University Koshigaya Hospital, No. 1-50, 2-Chome, Minami-Koshigaya, Koshigaya-shi, Saitama 343-8555, Japan
                3Department of Structural Pathology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata 951-8510, Japan
                4Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata 951-8510, Japan
                Author notes

                Academic Editor: Franca Anglani

                Article
                10.1155/2014/598670
                4020360
                24868462
                c1fded9c-31e3-43d7-9374-037ed8571b37
                Copyright © 2014 Ryo Koda et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 January 2014
                : 2 March 2014
                : 3 April 2014
                Categories
                Research Article

                Nephrology
                Nephrology

                Comments

                Comment on this article