The Personal Computer Storm Water Management Model was used in this study to evaluate the potential impacts of climate change, urbanization, and low-impact developments (LIDs) on urban flooding in Robe town, Ethiopia. To achieve the objective, four scenarios were developed in order to simulate changes in peak runoff, inundated volume, and the performance of existing drainage systems. The findings revealed that as urbanization increased from 10% to 70%, the inundated volume of nodes and peak runoff increased from 35,418 to 52,118 × 10 3 m 3 and 89.4–111.96 m 3/s, respectively. Furthermore, the peak runoff in response to climate change is increased by 46.9%, 34.8%, and 37.5%, respectively, as a result of the Rossby Centre Regional Climate Model version 4 (RCA4), Regional Atmospheric Climate Model (RACMO22T), and the hydrostatic version of the regional model (REMO2009). Overall, the findings showed that existing drainage systems were unable to collect and convey the amplified inundation from different simulated scenarios, and the Welmel sub-city to roundabout was threatened by increased flooding, causing significant damage to properties and infrastructure. The implemented LIDs are capable of reducing the expected peak runoff, flooding magnitude, and flooded junctions in climate change and urbanization scenarios; however, combining both mitigation measures can further reduce the study area. The implementation of a mitigation strategy with adequate drainage systems will be required to mitigate the flooding risks in Robe town.