17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Annotation and validation of genes involved in photosynthesis and starch synthesis from a Manihot full-length cDNA library

      research-article

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A full-length cDNA library from leaf and root tissues of cassava ( Manihot esculenta) Arg7 and one accession of its wild ancestor W14 ( M. esculenta ssp. flabellifolia) has been constructed. The library is comprised of four sub-libraries, containing 32640 recombinant clones, 6028 cDNA clones from their 5′ ends, and 128 clones from the 3′ ends were sequenced. In total, 5013 high-quality expressed sequence tags (ESTs) and 1259 unigenes were obtained. Of these, 746 unigenes were identified by their sequence homologies to ESTs from model plants, and 323 unigenes were mapped onto 114 different KEGG pathways. From these, 24 differentially expressed genes involved in starch metabolism and photosynthesis were identified and five of them were selected to compare their expression level between Arg7 and W14. Notably, Arg7 has a higher net photosynthesis rate in leaves, higher ribulose-1,5-bisphosphate carboxy-lase oxygenase activities in leaves, and higher AGPase activity in roots. This resource is the first EST collection from wild cassava and should be of value for gene discovery, genome annotation and studies of Manihot evolution.

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets.

          TGICL is a pipeline for analysis of large Expressed Sequence Tags (EST) and mRNA databases in which the sequences are first clustered based on pairwise sequence similarity, and then assembled by individual clusters (optionally with quality values) to produce longer, more complete consensus sequences. The system can run on multi-CPU architectures including SMP and PVM.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction.

            Here, we describe a fast, simple method for constructing full-length cDNA libraries using SMART technology. This novel procedure uses the template-switching activity of Moloney murine leukemia virus (MMLV) reverse transcriptase to synthesize and anchor first-strand cDNA in one step. Following reverse transcription, three cycles of PCR are performed using a modified oligo(dT) primer and an anchor primer to enrich the cDNA population for full-length sequences. Starting with 1 microgram human skeletal muscle poly(A)+ RNA, a cDNA library was constructed that contained 3 x 10(6) independent clones with an average insert size of 2 kb. Sequence analysis of 172 randomly selected clones showed that 77% of cDNA clones corresponding to known genes contained intact open reading frames. The average length of complete open reading frames was 2.4 kb. Furthermore, 86% of the full-length clones retained longer 5' UTR sequences than the longest 5' end deposited in the GenBank database. cDNA libraries generated using this method will be useful for accelerating the collection of mRNA 5' end sequence information, which is currently very limited in GenBank.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Are innate immune signaling pathways in plants and animals conserved?

              Although adaptive immunity is unique to vertebrates, the innate immune response seems to have ancient origins. Common features of innate immunity in vertebrates, invertebrate animals and plants include defined receptors for microbe-associated molecules, conserved mitogen-associated protein kinase signaling cascades and the production of antimicrobial peptides. It is commonly reported that these similarities in innate immunity represent a process of divergent evolution from an ancient unicellular eukaryote that pre-dated the divergence of the plant and animal kingdoms. However, at present, data suggest that the seemingly analogous regulatory modules used in plant and animal innate immunity are a consequence of convergent evolution and reflect inherent constraints on how an innate immune system can be constructed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front. Agr. Sci. Eng.
                FASE
                CN10-1204/S
                Frontiers of Agricultural Science and Engineering
                Higher Education Press (4 Huixin Dongjie, Chaoyang District, Beijing 100029, China )
                2095-7505
                2095-977X
                2016
                : 3
                : 4
                : 308-320
                Affiliations
                [1 ]. Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
                [2 ]. Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
                Author notes
                wangwenquan@itbb.org.cn
                Article
                10.15302/J-FASE-2016113
                c2348c12-d3e4-4015-9fc9-0a533a8985dc
                History
                : 8 September 2016
                : 8 October 2016
                Categories
                RESEARCH ARTICLE

                Management,Industrial organization,Risk management,Economics
                Manihot esculenta,unigene,pathway,expression pattern,expressed sequence tag

                Comments

                Comment on this article