9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Photodynamic Therapy for the Treatment of Glioblastoma

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glioblastoma is the most common form of adult brain cancer and remains one of the deadliest of human cancers. The current standard-of-care involves maximal tumor resection followed by treatment with concurrent radiation therapy and the chemotherapy temozolomide. Recurrence after this therapy is nearly universal within 2 years of diagnosis. Notably, >80% of recurrence is found in the region adjacent to the resection cavity. The need for improved local control in this region, thus remains unmet. The FDA approval of 5-aminolevulinic acid (5-ALA) for fluorescence guided glioblastoma resection renewed interests in leveraging this agent as a means to administer photodynamic therapy (PDT). Here we review the general principles of PDT as well as the available literature on PDT as a glioblastoma therapeutic platform.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Photodynamic therapy and anti-tumour immunity.

          Photodynamic therapy (PDT) uses non-toxic photosensitizers and harmless visible light in combination with oxygen to produce cytotoxic reactive oxygen species that kill malignant cells by apoptosis and/or necrosis, shut down the tumour microvasculature and stimulate the host immune system. In contrast to surgery, radiotherapy and chemotherapy that are mostly immunosuppressive, PDT causes acute inflammation, expression of heat-shock proteins, invasion and infiltration of the tumour by leukocytes, and might increase the presentation of tumour-derived antigens to T cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT.

            Photodynamic therapy (PDT) has been used for many years, but it is only now becoming widely accepted and utilized. Originally it was developed as a tumor therapy and some of its most successful applications are for non-malignant diseases. This article provides a broad review of different parameters used and mechanisms instituted in PDT such as photosensitizers (PS), photochemistry and photophysics, cellular localization, cellular signaling, cell metabolism and modes of cell death that operate on a cellular level, as well as photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. These specific cellular mechanisms are most commonly applied in PDT and for the most part are often researched and exploited. If the combination of these specific parameters and mechanisms can be optimized within PDT it could possibly be used as a suitable alternative for the treatment and management of specific cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diffuse glioma growth: a guerilla war

              In contrast to almost all other brain tumors, diffuse gliomas infiltrate extensively in the neuropil. This growth pattern is a major factor in therapeutic failure. Diffuse infiltrative glioma cells show some similarities with guerilla warriors. Histopathologically, the tumor cells tend to invade individually or in small groups in between the dense network of neuronal and glial cell processes. Meanwhile, in large areas of diffuse gliomas the tumor cells abuse pre-existent “supply lines” for oxygen and nutrients rather than constructing their own. Radiological visualization of the invasive front of diffuse gliomas is difficult. Although the knowledge about migration of (tumor)cells is rapidly increasing, the exact molecular mechanisms underlying infiltration of glioma cells in the neuropil have not yet been elucidated. As the efficacy of conventional methods to fight diffuse infiltrative glioma cells is limited, a more targeted (“search & destroy”) tactic may be needed for these tumors. Hopefully, the study of original human glioma tissue and of genotypically and phenotypically relevant glioma models will soon provide information about the Achilles heel of diffuse infiltrative glioma cells that can be used for more effective therapeutic strategies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Surg
                Front Surg
                Front. Surg.
                Frontiers in Surgery
                Frontiers Media S.A.
                2296-875X
                21 January 2020
                2019
                : 6
                : 81
                Affiliations
                Department of Neurosurgery, University of Minnesota , Minneapolis, MN, United States
                Author notes

                Edited by: Eberval Figueiredo, University of São Paulo, Brazil

                Reviewed by: Konstantin Slavin, University of Illinois at Chicago, United States; Mario Ganau, University of Trieste, Italy

                *Correspondence: Clark C. Chen ccchen@ 123456umn.edu

                This article was submitted to Neurosurgery, a section of the journal Frontiers in Surgery

                Article
                10.3389/fsurg.2019.00081
                6985206
                32039232
                c23a72ed-50ad-43f5-a74c-8864b3fdf4c8
                Copyright © 2020 Cramer and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 September 2019
                : 23 December 2019
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 78, Pages: 11, Words: 9157
                Categories
                Surgery
                Review

                brain tumor,photodynamic therapy (pdt),glioblastoma multiforme (gbm),tumor-targeting,neurosurgery

                Comments

                Comment on this article