11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Affinity labeling of the allosteric ADP activation site of NAD-dependent isocitrate dehydrogenase by 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-diphosphate.

      The Journal of Biological Chemistry
      Adenosine Diphosphate, analogs & derivatives, pharmacology, Affinity Labels, Allosteric Regulation, Allosteric Site, Animals, Enzyme Activation, Isocitrate Dehydrogenase, metabolism, Kinetics, Ligands, Macromolecular Substances, Myocardium, enzymology, NAD, Structure-Activity Relationship, Swine, Thionucleotides

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pig heart NAD-dependent isocitrate dehydrogenase is allosterically activated by ADP which reduces the Km of isocitrate. The new ADP analogue 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-diphosphate (BDB-TADP) reacts irreversibly with the enzyme at pH 6.1 and 25 degrees C, causing a rapid loss of the ability of ADP to increase the initial velocity of assays conducted at low isocitrate concentrations and a slower inactivation measured using saturating isocitrate concentrations. The rate constant for loss of ADP activation exhibits a nonlinear dependence on BDB-TADP concentration; in the presence of 0.2 mM MnSO4, KI for the reversible enzyme-reagent complex is 0.069 mM with kmax at saturating reagent concentrations equal to 0.031 min-1. For reaction at the site causing overall inactivation, KI for the initial reversible enzyme-reagent complex is estimated to be 0.018 mM with kmax = 0.0083 min-1 in the presence of 0.2 mM MnSO4. Total protection against both reactions is provided by 1 mM ADP plus 0.2 mM MnSO4 or by 0.1 mM ADP plus 0.2 mM MnSO4 plus 0.2 mM isocitrate, but not by NAD, ATP, or ADP plus EDTA. The BDB-TADP thus appears to modify two distinct metal-dependent ADP-binding sites. Incubation of isocitrate dehydrogenase with 0.14 mM BDB-[beta-32P]TADP at pH 6.1 in the presence of 0.2 mM MnSO4 results in incorporation of 0.81 mol of reagent/mol of average subunit when the ADP activation is completely lost and the enzyme is 68% inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 0.5 mol of BDB-TADP/mol of average enzyme subunit causes complete loss of ADP activation, while reaction with another 0.5 mol of BDB-TADP would lead to total inactivation. The enzyme is composed of three distinct subunits in the approximate ratio 2 alpha:1 beta:1 gamma. The distribution of BDB-[beta-32P]TADP incorporated into modified enzyme is 63:30:7% for alpha:beta:gamma throughout the course of the reaction. These results indicate the 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-diphosphate functions as an affinity label of two types of potential metal-dependent ADP sites of NAD-dependent isocitrate dehydrogenase and that these allosteric sites are present on two (alpha and beta) of the enzyme's three types of subunits.

          Related collections

          Author and article information

          Comments

          Comment on this article