1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A hydrogel system for stimulus-responsive, oxygen-sensitive in situ gelation

      , ,
      Journal of Biomaterials Science, Polymer Edition
      Brill

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: not found
          • Article: not found

          Hydrogels for tissue engineering.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-assembly of nanoparticles into structured spherical and network aggregates

            Multi-scale ordering of materials is central for the application of molecular systems in macroscopic devices. Self-assembly based on selective control of non-covalent interactions provides a powerful tool for the creation of structured systems at a molecular level, and application of this methodology to macromolecular systems provides a means for extending such structures to macroscopic length scale. Monolayer-functionalized nanoparticles can be made with a wide variety of metallic and non-metallic cores, providing a versatile building block for such approaches. Here we present a polymer-mediated 'bricks and mortar' strategy for the ordering of nanoparticles into structured assemblies. This methodology allows monolayer-protected gold particles to self-assemble into structured aggregates while thermally controlling their size and morphology. Using 2-nm gold particles as building blocks, we show that spherical aggregates of size 97 +/- 17 nm can be produced at 23 degrees C, and that 0.5-1 microm spherical assemblies with (5-40) x 10(5) individual subunits form at -20 degrees C. Intriguingly, extended networks of approximately 50-nm subunits are formed at 10 degrees C, illustrating the potential of our approach for the formation of diverse structural motifs such as wires and rods. These findings demonstrate that the assembly process provides control over the resulting aggregates, while the modularity of the 'bricks and mortar' approach allows combinatorial control over the constituents, providing a versatile route to new materials systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice.

              After intravenous (iv) injection of 125I-labeled poly(ethylene glycol) (PEG) with different molecular weights to mice, the radioactivity of the organs was measured to pharmacokinetically analyze the body distribution of PEG according to a two-compartment model. High molecular weight PEGs were retained in the blood circulation for a longer period than low molecular weight PEGs. The terminal half-life of PEG in the circulation extended from 18 min to 1 day as the PEG molecular weight increased from 6000 to 190,000. PEG tended to accumulate in the tissues/organs such as muscle, skin, bone, and the liver to a higher extent than the other organs, irrespective of the molecular weight. The time dependence of tissue accumulation was based on the vascular permeability. The results of pharmacokinetic analysis suggested that small PEG tended to freely translocate from the circulation to extravascular tissues and to return to the blood circulation again by diffusion, whereas large PEG translocated more slowly to extravascular tissues. Urinary clearance decreased with increasing PEG molecular weight, similar to the tissue clearance, whereas liver clearance increased with the increasing PEG molecular weight, after passing a minimum around the molecular weight of 50,000. PEG uptake by Kupffer cells was enhanced as the molecular weight became > 50,000.
                Bookmark

                Author and article information

                Journal
                Journal of Biomaterials Science, Polymer Edition
                Journal of Biomaterials Science, Polymer Edition
                Brill
                0920-5063
                1568-5624
                April 02 2012
                January 2004
                April 02 2012
                January 2004
                : 15
                : 7
                : 895-904
                Article
                10.1163/1568562041271039
                c241ad88-175a-402e-843d-571601dcf376
                © 2004
                History

                Comments

                Comment on this article