26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Role of Excitotoxic Programmed Necrosis in Acute Brain Injury

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Excitotoxicity involves the excessive release of glutamate from presynaptic nerve terminals and from reversal of astrocytic glutamate uptake, when there is excessive neuronal depolarization. N-methyl- d-aspartate (NMDA) receptors, a subtype of glutamate receptor, are activated in postsynaptic neurons, opening their receptor-operated cation channels to allow Ca 2 + influx. The Ca 2 + influx activates two enzymes, calpain I and neuronal nitric oxide synthase (nNOS). Calpain I activation produces mitochondrial release of cytochrome c (cyt c), truncated apoptosis-inducing factor (tAIF) and endonuclease G (endoG), the lysosomal release of cathepsins B and D and DNase II, and inactivation of the plasma membrane Na +–Ca 2 + exchanger, which add to the buildup of intracellular Ca 2 +. tAIF is involved in large-scale DNA cleavage and cyt c may be involved in chromatin condensation; endoG produces internucleosomal DNA cleavage. The nuclear actions of the other proteins have not been determined. nNOS forms nitric oxide (NO), which reacts with superoxide (O 2 ) to form peroxynitrite (ONOO ). These free radicals damage cellular membranes, intracellular proteins and DNA. DNA damage activates poly(ADP-ribose) polymerase-1 (PARP-1), which produces poly(ADP-ribose) (PAR) polymers that exit nuclei and translocate to mitochondrial membranes, also releasing AIF. Poly(ADP-ribose) glycohydrolase hydrolyzes PAR polymers into ADP-ribose molecules, which translocate to plasma membranes, activating melastatin-like transient receptor potential 2 (TRPM-2) channels, which open, allowing Ca 2 + influx into neurons. NADPH oxidase (NOX1) transfers electrons across cellular membranes, producing O 2 . The result of these processes is neuronal necrosis, which is a programmed cell death that is the basis of all acute neuronal injury in the adult brain.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation

          Programmed cell death (PCD) plays a key role in developmental biology and in maintenance of the steady state in continuously renewing tissues. Currently, its existence is inferred mainly from gel electrophoresis of a pooled DNA extract as PCD was shown to be associated with DNA fragmentation. Based on this observation, we describe here the development of a method for the in situ visualization of PCD at the single-cell level, while preserving tissue architecture. Conventional histological sections, pretreated with protease, were nick end labeled with biotinylated poly dU, introduced by terminal deoxy- transferase, and then stained using avidin-conjugated peroxidase. The reaction is specific, only nuclei located at positions where PCD is expected are stained. The initial screening includes: small and large intestine, epidermis, lymphoid tissues, ovary, and other organs. A detailed analysis revealed that the process is initiated at the nuclear periphery, it is relatively short (1-3 h from initiation to cell elimination) and that PCD appears in tissues in clusters. The extent of tissue-PCD revealed by this method is considerably greater than apoptosis detected by nuclear morphology, and thus opens the way for a variety of studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3.

            We report here the purification and cDNA cloning of Apaf-1, a novel 130 kd protein from HeLa cell cytosol that participates in the cytochrome c-dependent activation of caspase-3. The NH2-terminal 85 amino acids of Apaf-1 show 21% identity and 53% similarity to the NH2-terminal prodomain of the Caenorhabditis elegans caspase, CED-3. This is followed by 320 amino acids that show 22% identity and 48% similarity to CED-4, a protein that is believed to initiate apoptosis in C. elegans. The COOH-terminal region of Apaf-1 comprises multiple WD repeats, which are proposed to mediate protein-protein interactions. Cytochrome c binds to Apaf-1, an event that may trigger the activation of caspase-3, leading to apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor.

              Poly(ADP-ribose) polymerase-1 (PARP-1) protects the genome by functioning in the DNA damage surveillance network. PARP-1 is also a mediator of cell death after ischemia-reperfusion injury, glutamate excitotoxicity, and various inflammatory processes. We show that PARP-1 activation is required for translocation of apoptosis-inducing factor (AIF) from the mitochondria to the nucleus and that AIF is necessary for PARP-1-dependent cell death. N-methyl-N'-nitro-N-nitrosoguanidine, H2O2, and N-methyl-d-aspartate induce AIF translocation and cell death, which is prevented by PARP inhibitors or genetic knockout of PARP-1, but is caspase independent. Microinjection of an antibody to AIF protects against PARP-1-dependent cytotoxicity. These data support a model in which PARP-1 activation signals AIF release from mitochondria, resulting in a caspase-independent pathway of programmed cell death.
                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Struct Biotechnol J
                Comput Struct Biotechnol J
                Computational and Structural Biotechnology Journal
                Research Network of Computational and Structural Biotechnology
                2001-0370
                28 March 2015
                2015
                28 March 2015
                : 13
                : 212-221
                Affiliations
                David Geffen School of Medicine, University of California at Los Angeles, VA Greater Los Angeles Healthcare System, United States
                Article
                S2001-0370(15)00013-6
                10.1016/j.csbj.2015.03.004
                4398818
                25893083
                c24603bc-e79b-48b1-83e8-3c8f672b4129
                History
                : 28 August 2014
                : 19 March 2015
                : 21 March 2015
                Categories
                Mini Review

                excitotoxicity,necrosis,programmed cell death,nmda receptor

                Comments

                Comment on this article