10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Introduction of heteroplasmic mitochondrial DNA (mtDNA) from a patient with NARP into two human rho degrees cell lines is associated either with selection and maintenance of NARP mutant mtDNA or failure to maintain mtDNA.

      Human Molecular Genetics
      Ataxia, genetics, Blotting, Southern, Cell Division, DNA, Mitochondrial, metabolism, Fetal Diseases, Humans, Lung Neoplasms, Mitochondrial Myopathies, Mutation, Nervous System Diseases, Osteosarcoma, Retinitis Pigmentosa, Syndrome, Transformation, Genetic, Tumor Cells, Cultured

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondria from a patient heteroplasmic at nucleo-tide position 8993 of mitochondrial DNA (mtDNA) were introduced into two human tumour cell lines lacking mtDNA. The donor mitochondria contained between 85 and 95% 8993G:C mtDNA. All detectable mtDNA in the mitochondrially transformed cells contained the pathological 8993G:C mutation 3 months after transformation. These results suggest that 8993G:C mtDNA had a selective advantage over 8993T:A mtDNA in both lung carcinoma and osteo-sarcoma cell backgrounds. In contrast, two other presumed pathological mtDNA variants were lost in favour of 'wild-type' mtDNA molecules in the same lung carcinoma cell background. Taken together, these findings suggest that the transmission bias of mtDNA variants is dependent upon a combination of nuclear background and mtDNA genotype. A second phenomenon observed was a marked decrease in the growth rate of many putative transformed cell lines after 6 weeks of culturing in selective medium, and in these cell lines mtDNA was not readily detectable by Southern blotting. Restriction endonuclease analysis and sequencing of amplified mtDNA demonstrated that the slow growing cells contained little or no mtDNA. It is concluded that these cells represented transient mitochondrial transformants.

          Related collections

          Author and article information

          Comments

          Comment on this article