31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sensitivity of fNIRS to cognitive state and load

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Functional near-infrared spectroscopy (fNIRS) is an emerging low-cost noninvasive neuroimaging technique that measures cortical bloodflow. While fNIRS has gained interest as a potential alternative to fMRI for use with clinical and pediatric populations, it remains unclear whether fNIRS has the necessary sensitivity to serve as a replacement for fMRI. The present study set out to examine whether fNIRS has the sensitivity to detect linear changes in activation and functional connectivity in response to cognitive load, and functional connectivity changes when transitioning from a task-free resting state to a task. Sixteen young adult subjects were scanned with a continuous-wave fNIRS system during a 10-min resting-state scan followed by a letter n-back task with three load conditions. Five optical probes were placed over frontal and parietal cortices, covering bilateral dorsolateral PFC (dlPFC), bilateral ventrolateral PFC (vlPFC), frontopolar cortex (FP), and bilateral parietal cortex. Activation was found to scale linearly with working memory load in bilateral prefrontal cortex. Functional connectivity increased with increasing n-back loads for fronto-parietal, interhemispheric dlPFC, and local connections. Functional connectivity differed between the resting state scan and the n-back scan, with fronto-parietal connectivity greater during the n-back, and interhemispheric vlPFC connectivity greater during rest. These results demonstrate that fNIRS is sensitive to both cognitive load and state, suggesting that fNIRS is well-suited to explore the full complement of neuroimaging research questions and will serve as a viable alternative to fMRI.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain.

          Near-infrared spectroscopy (NIRS) is a noninvasive neuroimaging tool for studying evoked hemodynamic changes within the brain. By this technique, changes in the optical absorption of light are recorded over time and are used to estimate the functionally evoked changes in cerebral oxyhemoglobin and deoxyhemoglobin concentrations that result from local cerebral vascular and oxygen metabolic effects during brain activity. Over the past three decades this technology has continued to grow, and today NIRS studies have found many niche applications in the fields of psychology, physiology, and cerebral pathology. The growing popularity of this technique is in part associated with a lower cost and increased portability of NIRS equipment when compared with other imaging modalities, such as functional magnetic resonance imaging and positron emission tomography. With this increasing number of applications, new techniques for the processing, analysis, and interpretation of NIRS data are continually being developed. We review some of the time-series and functional analysis techniques that are currently used in NIRS studies, we describe the practical implementation of various signal processing techniques for removing physiological, instrumental, and motion-artifact noise from optical data, and we discuss the unique aspects of NIRS analysis in comparison with other brain imaging modalities. These methods are described within the context of the MATLAB-based graphical user interface program, HomER, which we have developed and distributed to facilitate the processing of optical functional brain data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Computerized training of working memory in children with ADHD--a randomized, controlled trial.

            Deficits in executive functioning, including working memory (WM) deficits, have been suggested to be important in attention-deficit/hyperactivity disorder (ADHD). During 2002 to 2003, the authors conducted a multicenter, randomized, controlled, double-blind trial to investigate the effect of improving WM by computerized, systematic practice of WM tasks. Included in the trial were 53 children with ADHD (9 girls; 15 of 53 inattentive subtype), aged 7 to 12 years, without stimulant medication. The compliance criterion (>20 days of training) was met by 44 subjects, 42 of whom were also evaluated at follow-up 3 months later. Participants were randomly assigned to use either the treatment computer program for training WM or a comparison program. The main outcome measure was the span-board task, a visuospatial WM task that was not part of the training program. For the span-board task, there was a significant treatment effect both post-intervention and at follow-up. In addition, there were significant effects for secondary outcome tasks measuring verbal WM, response inhibition, and complex reasoning. Parent ratings showed significant reduction in symptoms of inattention and hyperactivity/impulsivity, both post-intervention and at follow-up. This study shows that WM can be improved by training in children with ADHD. This training also improved response inhibition and reasoning and resulted in a reduction of the parent-rated inattentive symptoms of ADHD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection.

              Although it has long been thought that frontal lobe abnormality must play an important part in generating the severe impairment in higher-order social, emotional and cognitive functions in autism, only recently have studies identified developmentally early frontal lobe defects. At the microscopic level, neuroinflammatory reactions involving glial activation, migration defects and excess cerebral neurogenesis and/or defective apoptosis might generate frontal neural pathology early in development. It is hypothesized that these abnormal processes cause malformation and thus malfunction of frontal minicolumn microcircuitry. It is suggested that connectivity within frontal lobe is excessive, disorganized and inadequately selective, whereas connectivity between frontal cortex and other systems is poorly synchronized, weakly responsive and information impoverished. Increased local but reduced long-distance cortical-cortical reciprocal activity and coupling would impair the fundamental frontal function of integrating information from widespread and diverse systems and providing complex context-rich feedback, guidance and control to lower-level systems.
                Bookmark

                Author and article information

                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                20 February 2014
                2014
                : 8
                : 76
                Affiliations
                [1] 1Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
                [2] 2Department of Psychology, Georgetown University Washington, DC, USA
                [3] 3Center for Functional and Molecular Imaging, Georgetown University Medical Center Washington, DC, USA
                [4] 4Children's National Medical Center, Children's Research Institute Washington, DC, USA
                Author notes

                Edited by: Nobuo Masataka, Kyoto University, Japan

                Reviewed by: Hasan Ayaz, Drexel University, USA; Yukika Nishimura, University of Tokyo, Japan

                *Correspondence: Chandan J. Vaidya, Department of Psychology, Georgetown University, 306 White-Gravenor Hall, Washington, DC 20057, USA e-mail: cjv2@ 123456georgetown.edu

                This article was submitted to the journal Frontiers in Human Neuroscience.

                Article
                10.3389/fnhum.2014.00076
                3930096
                24600374
                c24ef191-3e29-44c5-8b81-079049d853b5
                Copyright © 2014 Fishburn, Norr, Medvedev and Vaidya.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 October 2013
                : 30 January 2014
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 69, Pages: 11, Words: 8659
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                working memory,n-back,functional connectivity,resting state,fronto-parietal
                Neurosciences
                working memory, n-back, functional connectivity, resting state, fronto-parietal

                Comments

                Comment on this article