3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanoparticle–Film Plasmon Ruler Interrogated with Transmission Visible Spectroscopy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The widespread use of plasmonic nanorulers (PNRs) in sensing platforms has been plagued by technical challenges associated with the development of methods to fabricate precisely controlled nanostructures with high yield and characterize them with high throughput. We have previously shown that creating PNRs in a nanoparticle–film (NP–film) format enables the fabrication of an extremely large population of uniform PNRs with 100% yield using a self-assembly approach, which facilitates high-throughput PNR characterization using ensemble spectroscopic measurements and eliminates the need for expensive microscopy systems required by many other PNR platforms. We expand upon this prior work herein, showing that the NP–film PNR can be made compatible with aqueous sensing studies by adapting it for use in a transmission localized surface plasmon resonance spectroscopy format, where the coupled NP–film resonance responsible for the PNR signal is directly probed using an extinction measurement from a standard spectrophotometer. We designed slide holders that fit inside standard spectrophotometer cuvettes and position NP–film samples so that the coupled NP–film resonance can be detected in a collinear optical configuration. Once the NP–film PNR samples are cuvette-compatible, it is straightforward to calibrate the PNR in aqueous solution and use it to characterize dynamic, angstrom-scale distance changes resulting from pH-induced swelling of polyelectrolyte (PE) spacer layers as thin as 1 PE layer and also of a self-assembled monolayer of an amine-terminated alkanethiol. This development is an important step toward making PNR sensors more user-friendly and encouraging their widespread use in various sensing schemes.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Probing the ultimate limits of plasmonic enhancement.

          Metals support surface plasmons at optical wavelengths and have the ability to localize light to subwavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. We found that the dominant limiting factor is not the resistive loss of the metal, but rather the intrinsic nonlocality of its dielectric response. A semiclassical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. To demonstrate the accuracy of this model, we studied optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles.

            Triangular silver nanoparticles ( approximately 100 nm wide and 50 nm high) have remarkable optical properties. In particular, the peak extinction wavelength, lambda(max) of their localized surface plasmon resonance (LSPR) spectrum is unexpectedly sensitive to nanoparticle size, shape, and local ( approximately 10-30 nm) external dielectric environment. This sensitivity of the LSPR lambda(max) to the nanoenvironment has allowed us to develop a new class of nanoscale affinity biosensors. The essential characteristics and operational principles of these LSPR nanobiosensors will be illustrated using the well-studied biotin-streptavidin system. Exposure of biotin-functionalized Ag nanotriangles to 100 nM streptavidin (SA) caused a 27.0 nm red-shift in the LSPR lambda(max). The LSPR lambda(max) shift, DeltaR/DeltaR(max), versus [SA] response curve was measured over the concentration range 10(-)(15) M < [SA] < 10(-)(6) M. Comparison of the data with the theoretical normalized response expected for 1:1 binding of a ligand to a multivalent receptor with different sites but invariant affinities yielded approximate values for the saturation response, DeltaR(max) = 26.5 nm, and the surface-confined thermodynamic binding constant K(a,surf) = 10(11) M(-)(1). At present, the limit of detection (LOD) for the LSPR nanobiosensor is found to be in the low-picomolar to high-femtomolar region. A strategy to amplify the response of the LSPR nanobiosensor using biotinylated Au colloids and thereby further improve the LOD is demonstrated. Several control experiments were performed to define the LSPR nanobiosensor's response to nonspecific binding as well as to demonstrate its response to the specific binding of another protein. These include the following: (1) electrostatic binding of SA to a nonbiotinylated surface, (2) nonspecific interactions of prebiotinylated SA to a biotinylated surface, (3) nonspecific interactions of bovine serum albumin to a biotinylated surface, and (4) specific binding of anti-biotin to a biotinylated surface. The LSPR nanobiosensor provides a pathway to ultrasensitive biodetection experiments with extremely simple, small, light, robust, low-cost instrumentation that will greatly facilitate field-portable environmental or point-of-service medical diagnostic applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A molecular ruler based on plasmon coupling of single gold and silver nanoparticles.

              Forster Resonance Energy Transfer has served as a molecular ruler that reports conformational changes and intramolecular distances of single biomolecules. However, such rulers suffer from low and fluctuating signal intensities, limited observation time due to photobleaching, and an upper distance limit of approximately 10 nm. Noble metal nanoparticles have plasmon resonances in the visible range and do not blink or bleach. They have been employed as alternative probes to overcome the limitations of organic fluorophores, and the coupling of plasmons in nearby particles has been exploited to detect particle aggregation by a distinct color change in bulk experiments. Here we demonstrate that plasmon coupling can be used to monitor distances between single pairs of gold and silver nanoparticles. We followed the directed assembly of gold and silver nanoparticle dimers in real time and studied the kinetics of single DNA hybridization events. These "plasmon rulers" allowed us to continuously monitor separations of up to 70 nm for >3,000 s.
                Bookmark

                Author and article information

                Journal
                ACS Photonics
                ACS Photonics
                ph
                apchd5
                ACS Photonics
                American Chemical Society
                2330-4022
                2330-4022
                11 September 2015
                11 September 2014
                15 October 2014
                : 1
                : 10
                : 974-984
                Affiliations
                [1] Department of Biomedical Engineering, Department of Electrical and Computer Engineering, §Center for Metamaterials and Integrated Plasmonics, and Center for Biologically Inspired Materials and Material Systems, Duke University , Durham, North Carolina 27708, United States
                Author notes
                Article
                10.1021/ph500190q
                4270419
                25541618
                c251f600-6a42-4c25-b651-c6eb26c95619
                Copyright © 2014 American Chemical Society
                History
                : 28 May 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                ph500190q
                ph-2014-00190q

                plasmonics,3d printing,localized surface plasmon resonance,plasmon coupling,plasmon ruler,sensor

                Comments

                Comment on this article