52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Specificity and complexity in bacterial quorum-sensing systems

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quorum sensing (QS) is a microbial cell-to-cell communication process that relies on the production and detection of chemical signals called autoinducers (AIs) to monitor cell density and species complexity in the population. QS allows bacteria to behave as a cohesive group and coordinate collective behaviors. While most QS receptors display high specificity to their AI ligands, others are quite promiscuous in signal detection. How do specific QS receptors respond to their cognate signals with high fidelity? Why do some receptors maintain low signal recognition specificity? In addition, many QS systems are composed of multiple intersecting signaling pathways: what are the benefits of preserving such a complex signaling network when a simple linear ‘one-to-one’ regulatory pathway seems sufficient to monitor cell density? Here, we will discuss different molecular mechanisms employed by various QS systems that ensure productive and specific QS responses. Moreover, the network architectures of some well-characterized QS circuits will be reviewed to understand how the wiring of different regulatory components achieves different biological goals.

          Abstract

          This review focuses on the specificity and complexity of quorum-sensing circuits in both Gram-negative and Gram-positive bacterial species.

          Abstract

          Graphical Abstract Figure.

          This review focuses on the specificity and complexity of quorum-sensing circuits in both Gram-negative and Gram-positive bacterial species.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial quorum-sensing network architectures.

          Quorum sensing is a cell-cell communication process in which bacteria use the production and detection of extracellular chemicals called autoinducers to monitor cell population density. Quorum sensing allows bacteria to synchronize the gene expression of the group, and thus act in unison. Here, we review the mechanisms involved in quorum sensing with a focus on the Vibrio harveyi and Vibrio cholerae quorum-sensing systems. We discuss the differences between these two quorum-sensing systems and the differences between them and other paradigmatic bacterial signal transduction systems. We argue that the Vibrio quorum-sensing systems are optimally designed to precisely translate extracellular autoinducer information into internal changes in gene expression. We describe how studies of the V. harveyi and V. cholerae quorum-sensing systems have revealed some of the fundamental mechanisms underpinning the evolution of collective behaviors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Social evolution theory for microorganisms.

            Microorganisms communicate and cooperate to perform a wide range of multicellular behaviours, such as dispersal, nutrient acquisition, biofilm formation and quorum sensing. Microbiologists are rapidly gaining a greater understanding of the molecular mechanisms involved in these behaviours, and the underlying genetic regulation. Such behaviours are also interesting from the perspective of social evolution - why do microorganisms engage in these behaviours given that cooperative individuals can be exploited by selfish cheaters, who gain the benefit of cooperation without paying their share of the cost? There is great potential for interdisciplinary research in this fledgling field of sociomicrobiology, but a limiting factor is the lack of effective communication of social evolution theory to microbiologists. Here, we provide a conceptual overview of the different mechanisms through which cooperative behaviours can be stabilized, emphasizing the aspects most relevant to microorganisms, the novel problems that microorganisms pose and the new insights that can be gained from applying evolutionary theory to microorganisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural identification of a bacterial quorum-sensing signal containing boron.

              Cell-cell communication in bacteria is accomplished through the exchange of extracellular signalling molecules called autoinducers. This process, termed quorum sensing, allows bacterial populations to coordinate gene expression. Community cooperation probably enhances the effectiveness of processes such as bioluminescence, virulence factor expression, antibiotic production and biofilm development. Unlike other autoinducers, which are specific to a particular species of bacteria, a recently discovered autoinducer (AI-2) is produced by a large number of bacterial species. AI-2 has been proposed to serve as a 'universal' signal for inter-species communication. The chemical identity of AI-2 has, however, proved elusive. Here we present the crystal structure of an AI-2 sensor protein, LuxP, in a complex with autoinducer. The bound ligand is a furanosyl borate diester that bears no resemblance to previously characterized autoinducers. Our findings suggest that addition of naturally occurring borate to an AI-2 precursor generates active AI-2. Furthermore, they indicate a potential biological role for boron, an element required by a number of organisms but for unknown reasons.
                Bookmark

                Author and article information

                Journal
                FEMS Microbiol Rev
                FEMS Microbiol. Rev
                femsre
                femsre
                FEMS Microbiology Reviews
                Oxford University Press
                0168-6445
                1574-6976
                26 June 2016
                September 2016
                26 June 2016
                : 40
                : 5
                : 738-752
                Affiliations
                [1 ]Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
                [2 ]Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
                Author notes
                [* ] Corresponding author: Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA. Tel: 617-636-0881; E-mail: Wai-Leung.Ng@ 123456tufts.edu
                []Contributed equally.
                Article
                10.1093/femsre/fuw014
                5007282
                27354348
                c2554b2d-c2d8-44f9-b697-d03b13a3e642
                © FEMS 2016.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 May 2016
                : 23 March 2016
                Page count
                Pages: 15
                Categories
                Review Article
                Custom metadata
                September 2016

                Microbiology & Virology
                intercellular communication,gene expression,group behavior,regulatory network,chemical signaling

                Comments

                Comment on this article