6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of a Novel Nordic Hamstring Exercise Device to Measure and Modify the Knee Flexors' Torque-Length Relationship

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Nordic hamstring exercise (NHE) has been shown to reduce hamstring injury risk when employed in training programs. This study investigates a novel device to modify the NHE torque-length relationship of the knee flexors, as targeting the hamstrings at a more extended length may have benefits for hamstring strain injury prevention and rehabilitation. Eighteen recreational male participants completed three bilateral NHE repetitions at a conventional 0° flat position, a 10° incline, and a 10° decline slope on a novel device (HA LHAM°). Measures of peak torque and break-torque angle explored the effect of inclination on the knee flexors' length-tension relationship. Relative thigh-to-trunk angle and angular velocity of the knee joint were used to assess influence of inclination on technique and exercise quality. Break-torque angle increased when performed at an incline (134.1 ± 8.6°) compared to both the decline (112.1 ± 8.3°, p <0.0001, g = 2.599) and standard flat NHE positions (126.0 ± 9.8°, p = 0.0002, g = 0.885). Despite this, altering inclination did not affect eccentric knee flexor peak torque (decline = 132.0 ± 63.1 Nm, flat = 149.7 ± 70.1 Nm, incline = 148.9 ± 64.9 Nm, F = 0.952, p = 0.389), angular velocity of the knee joint at break-torque angle (decline = 23.8 ± 14.4°, flat = 29.2 ± 22.6°, incline = 24.5 ± 22.6°, F = 0.880, p = 0.418) or relative thigh-to-trunk angle at break-torque angle (decline = 20.4 ± 10.4°, flat = 16.7 ± 10.8°, incline = 20.2 ± 11.2°, F = 1.597, p = 0.207). The report recommends the use of arbitrary metrics such as break-torque angle that can be replicated practically in the field by practitioners to assess proxy muscle length changes i.e., the angular range over which the torque can be produced. Inclination of the Nordic hamstring exercise leads to hamstring muscle failure at longer muscle lengths without reductions in the maximal force exuded by the muscle. Therefore, the NHE performed on an incline may be a more effective training intervention, specific to the proposed mechanism of hamstring strain injury during sprinting that occurs whilst the muscle is rapidly lengthening. Using a graded training intervention through the inclinations could aid gradual return-to-play rehabilitation.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Hamstring injuries have increased by 4% annually in men's professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study.

          There are limited data on hamstring injury rates over time in football.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hamstring strain injuries: factors that lead to injury and re-injury.

            Hamstring strain injuries (HSIs) are common in a number of sports and incidence rates have not declined in recent times. Additionally, the high rate of recurrent injuries suggests that our current understanding of HSI and re-injury risk is incomplete. Whilst the multifactoral nature of HSIs is agreed upon by many, often individual risk factors and/or causes of injury are examined in isolation. This review aims to bring together the causes, risk factors and interventions associated with HSIs to better understand why HSIs are so prevalent. Running is often identified as the primary activity type for HSIs and given the high eccentric forces and moderate muscle strain placed on the hamstrings during running these factors are considered to be part of the aetiology of HSIs. However, the exact causes of HSIs remain unknown and whilst eccentric contraction and muscle strain purportedly play a role, accumulated muscle damage and/or a single injurious event may also contribute. Potentially, all of these factors interact to varying degrees depending on the injurious activity type (i.e. running, kicking). Furthermore, anatomical factors, such as the biarticular organization, the dual innervations of biceps femoris (BF), fibre type distribution, muscle architecture and the degree of anterior pelvic tilt, have all been implicated. Each of these variables impact upon HSI risk via a number of different mechanisms that include increasing hamstring muscle strain and altering the susceptibility of the hamstrings to muscle damage. Reported risk factors for HSIs include age, previous injury, ethnicity, strength imbalances, flexibility and fatigue. Of these, little is known, definitively, about why previous injury increases the risk of future HSIs. Nevertheless, interventions put in place to reduce the incidence of HSIs by addressing modifiable risk factors have focused primarily on increasing eccentric strength, correcting strength imbalances and improving flexibility. The response to these intervention programmes has been mixed with varied levels of success reported. A conceptual framework is presented suggesting that neuromuscular inhibition following HSIs may impede the rehabilitation process and subsequently lead to maladaptation of hamstring muscle structure and function, including preferentially eccentric weakness, atrophy of the previously injured muscles and alterations in the angle of peak knee flexor torque. This remains an area for future research and practitioners need to remain aware of the multifactoral nature of HSIs if injury rates are to decline.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epidemiology of muscle injuries in professional football (soccer).

              Muscle injuries constitute a large percentage of all injuries in football. To investigate the incidence and nature of muscle injuries in male professional footballers. Cohort study; Level of evidence, 2. Fifty-one football teams, comprising 2299 players, were followed prospectively during the years 2001 to 2009. Team medical staff recorded individual player exposure and time-loss injuries. The first-team squads of 24 clubs selected by the Union of European Football Associations as belonging to the best European teams, 15 teams of the Swedish First League, and another 15 European teams playing their home matches on artificial turf pitches were included. A muscle injury was defined as "a traumatic distraction or overuse injury to the muscle leading to a player being unable to fully participate in training or match play." In total, 2908 muscle injuries were registered. On average, a player sustained 0.6 muscle injuries per season. A squad of 25 players can thus expect about 15 muscle injuries per season. Muscle injuries constituted 31% of all injuries and caused 27% of the total injury absence. Ninety-two percent of all muscle injuries affected the 4 major muscle groups of the lower limbs: hamstrings (37%), adductors (23%), quadriceps (19%), and calf muscles (13%). Sixteen percent of the muscle injuries were reinjuries. These reinjuries caused significantly longer absences than did index injuries. The incidence of muscle injury increased with age. When separated into different muscle groups, however, an increased incidence with age was found only for calf muscle injuries and not for hamstring, quadriceps, or hip/groin strains. Muscle injuries are a substantial problem for players and their clubs. They constitute almost one third of all time-loss injuries in men's professional football, and 92% of all injuries affect the 4 big muscle groups in the lower limbs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Sports Act Living
                Front Sports Act Living
                Front. Sports Act. Living
                Frontiers in Sports and Active Living
                Frontiers Media S.A.
                2624-9367
                24 February 2021
                2021
                : 3
                : 629606
                Affiliations
                [1] 1Sports Engineering Research Group (SERG), Advanced Wellbeing Research Centre (AWRC), Sheffield Hallam University , Sheffield, United Kingdom
                [2] 2Physical Activity, Wellness and Public Health Research Group (PAWPH), Advanced Wellbeing Research Centre (AWRC), Sheffield Hallam University , Sheffield, United Kingdom
                Author notes

                Edited by: Philippe Matthias Tscholl, Geneva University Hospitals (HUG), Switzerland

                Reviewed by: Sebastien Piotton, Hirslanden Clinic La Colline, Switzerland; Jeremy Rossi, Université Jean Monnet, France

                *Correspondence: Emma Sconce emma.sconce@ 123456student.shu.ac.uk

                This article was submitted to Injury Prevention and Rehabilitation, a section of the journal Frontiers in Sports and Active Living

                Article
                10.3389/fspor.2021.629606
                7943483
                c2626443-d4b2-425e-b404-3f8f3d4d5146
                Copyright © 2021 Sconce, Heller, Maden-Wilkinson and Hamilton.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 November 2020
                : 02 February 2021
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 40, Pages: 9, Words: 6287
                Categories
                Sports and Active Living
                Original Research

                nordic hamstring exercise,hamstring strain injury,injury prevention,rehabilitation,long muscle length training

                Comments

                Comment on this article