Blog
About

2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Method for comparing the structures of protein ligand-binding sites and application for predicting protein-drug interactions.

      Proteins

      Binding Sites, Biochemistry, methods, Biological Assay, Ligands, Magnetic Resonance Spectroscopy, Pharmaceutical Preparations, Reproducibility of Results, metabolism, Protein Structure, Secondary, Proteins, chemistry, Algorithms

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many drugs, even ones that are designed to act selectively on a target protein, bind unintended proteins. These unintended bindings can explain side effects or indicate additional mechanisms for a drug's medicinal properties. Structural similarity between binding sites is one of the reasons for binding to multiple targets. We developed a method for the structural alignment of atoms in the solvent-accessible surface of proteins that uses similarities in the local atomic environment, and carried out all-against-all structural comparisons for 48,347 potential ligand-binding regions from a nonredundant protein structure subset (nrPDB, provided by NCBI). The relationships between the similarity of ligand-binding regions and the similarity of the global structures of the proteins containing the binding regions were examined. We found 10,403 known ligand-binding region pairs whose structures were similar despite having different global folds. Of these, we detected 281 region pairs that had similar ligands with similar binding modes. These proteins are good examples of convergent evolution. In addition, we found a significant correlation between Z-score of structural similarity and true positive rate of "active" entries in the PubChem BioAssay database. Moreover, we confirmed the interaction between ibuprofen and a new target, porcine pancreatic elastase, by NMR experiment. Finally, we used this method to predict new drug-target protein interactions. We obtained 540 predictions for 105 drugs (e.g., captopril, lovastatin, flurbiprofen, metyrapone, and salicylic acid), and calculated the binding affinities using AutoDock simulation. The results of these structural comparisons are available at http://www.tsurumi.yokohama-cu.ac.jp/fold/database.html. 2008 Wiley-Liss, Inc.

          Related collections

          Author and article information

          Journal
          18214952
          10.1002/prot.21933

          Comments

          Comment on this article