13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Management Strategies of Ocular Chemical Burns: Current Perspectives

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ocular chemical burns are absolute ophthalmic emergencies and require immediate management to minimize devastating sequelae. Management of alkali and acid burns is started at the scene of the accident by copious irrigation. Treatment is directed at improving epithelial integrity and stromal stability, reduction of undue inflammation, and prevention or timely management of complications. To ascertain the best possible outcome, numerous biological medications and surgical interventions have been merged into conventional therapeutic regimens. These include autologous and umbilical cord serum preparations, platelet-rich plasma, amniotic membrane transplantation, limbal stem-cell transplantation, and anti-angiogenic agents.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: not found
          • Article: not found

          Platelet-rich plasma (PRP): what is PRP and what is not PRP?

          R Marx (2001)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane.

            To identify the potential antiangiogenic and antiinflammatory proteins expressed in human amniotic membrane tissue. Human amniotic epithelial and mesenchymal cells were isolated from human amniotic membranes by sequential trypsin and collagenase digestion. Total RNAs were harvested from freshly obtained human amniotic epithelial and mesenchymal cells. Antiangiogenic and antiinflammatory proteins were detected by the reverse transcriptase-polymerase chain reaction (RT-PCR) technique and further confirmed by DNA sequencing of PCR-amplified transcripts. The distribution of tissue inhibitors of metalloproteinase (TIMPs) were studied further by immunohistochemistry performed on paraffin-embedded amniotic membrane tissue. RT-PCR results showed that both human amniotic epithelial and mesenchymal cells express interleukin-1 receptor antagonist, all four TIMPs, collagen XVIII, and interleukin-10. Thrombospondin-1 was expressed in all of the epithelial cell specimens and in one out of five mesenchymal cell specimens. Furthermore, immunohistochemistry studies performed on freshly prepared amniotic membrane confirmed that all members of the TIMP family were present in epithelial and mesenchymal cells as well as in the compact layer of the amniotic stroma. In cryopreserved amniotic membranes, positive staining was seen in residual amniotic cells and stroma. Human amniotic membrane epithelial and mesenchymal cells express various antiangiogenic and antiinflammatory proteins. Some of those proteins also were found in amniotic membrane stroma. These findings may explain in part the antiangiogenic and antiinflammatory effects of amniotic membrane transplantation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical injuries of the eye: current concepts in pathophysiology and therapy.

              M Wagoner (2015)
              Chemical injuries of the eye may produce extensive damage to the ocular surface epithelium, cornea, and anterior segment, resulting in permanent unilateral or bilateral visual impairment. Pathophysiological events which may influence the final visual prognosis and which are amenable to therapeutic modulation include 1) ocular surface injury, repair, and differentiation, 2) corneal stromal matrix injury, repair and/or ulceration, and 3) corneal and stromal inflammation. Immediately following chemical injury, it is important to estimate and clinically grade the severity of limbal stem cell injury (by assessing the degree of limbal, conjunctival, and scleral ischemia and necrosis) and intraocular penetration of the noxious agent (by assessing clarity of the corneal stroma and anterior segment abnormalities). Immediate therapy is directed toward prompt irrigation and removal of any remaining reservoir of chemical contact with the eye. Initial medical therapy is directed promoting re-epithelialization and transdifferentiation of the ocular surface, augmenting corneal repair by supporting keratocyte collagen production and minimizing ulceration related to collagenase activity, and controlling inflammation. Early surgical therapy if indicated, is directed toward removal of necrotic corneal epithelium and conjunctiva, prompt re-establishment of an adequate limbal vascularity, and re-establishment of limbal stem cell population early in the clinical course, if sufficient evidence exists of complete limbal stem cell loss. Re-establishment of limbal stem cells by limbal autograft or allograft transplantation, or by transfer in conjunction with large diameter penetrating keratoplasty, may facilitate development of an intact, phenotypically correct corneal epithelium. Limbal stem cell transplantation may prevent the development of fibrovascular pannus or sterile corneal corneal ulceration, simplify visual rehabilitation, and improve the visual prognosis. Advances in ocular surface transplantation techniques which allow late attempts at visual rehabilitation of a scarred and vascularized cornea include limbal stem cell transplantation for incomplete transdifferentiation and persistent corneal epithelial dysfunction, and conjunctival and/or mucosal membrane transplantation for ocular surface mechanical dysfunction. Rehabilitation of the ocular surface may be followed, if necessary, by standard penetrating keratoplasty if all aspects of ocular surface rehabilitation are complete, or by large diameter penetrating keratoplasty if successful limbal stem cell transplantation cannot be achieved but other ocular surface rehabilitation is complete.
                Bookmark

                Author and article information

                Journal
                Clin Ophthalmol
                Clin Ophthalmol
                opth
                clinop
                Clinical Ophthalmology (Auckland, N.Z.)
                Dove
                1177-5467
                1177-5483
                15 September 2020
                2020
                : 14
                : 2687-2699
                Affiliations
                [1 ]Ocular Trauma and Emergency Department, Farabi Eye Hospital, Tehran University of Medical Sciences , Tehran, Iran
                Author notes
                Correspondence: Mohammad Soleimani; Morteza Naderan Ocular Trauma and Emergency Department, Farabi Eye Hospital, Tehran University of Medical Sciences , Tehran1336616351, IranTel +98 912 1096496 Email Soleimani_md@yahoo.com; morteza.naderan@yahoo.com
                Author information
                http://orcid.org/0000-0002-6546-3546
                Article
                235873
                10.2147/OPTH.S235873
                7501954
                32982161
                c274a3cd-b5df-4e20-aa23-4b06a4cba96e
                © 2020 Soleimani and Naderan.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 09 July 2020
                : 20 August 2020
                Page count
                Figures: 1, Tables: 4, References: 137, Pages: 13
                Categories
                Review

                Ophthalmology & Optometry
                ocular chemical burn,amniotic membrane transplantation,autologous serum,limbal stem cell transplantation

                Comments

                Comment on this article