2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      CD30 Antigen and Multiple Sclerosis: CD30, an Important Costimulatory Molecule and Marker of a Regulatory Subpopulation of Dendritic Cells, Is Involved in the Maintenance of the Physiological Balance between TH1/TH2 Immune Responses and Tolerance

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives: The immunological effect of CD30 on dendritic cells (DCs) was examined in a comparative study of patients with relapsing-remitting multiple sclerosis (RRMS). The patients were divided into two groups on the basis of interferon (IFN)β-1a treatment: IFNβ-1a-treated patients and untreated patients. We have already shown that CD30 is a marker of cells involved in the regulation of the balance between TH1 and TH2 immune responses and so the aim of this study was to confirm this role in DCs and, consequently, to clarify the immunopathological mechanisms of MS and the causes of immunosuppressive drug failure. Methods: We studied network interactions between soluble (s) CD30 and TH1/TH2 cytokines in the supernatants of CD14+-derived immature DC (IDC) and DC cultures from treated and untreated patients. Network interactions between the sCD30 and cytokines in IDC and DC supernatants were also evaluated in relation to TH1/TH2 cytokine serum levels. Results: Our overall results show that CD30 is expressed on IDCs and DCs, indicating an immunological role in resting and activated physiological conditions. This role would appear to be the regulation of the resting and activated physiological balance between the TH1/TH2 immune functions as abnormal increases in sCD30 levels result in impaired regulation. Further studies are undoubtedly required to clarify this situation. IFNβ-1a treatment was found to determine a fall in sCD30 levels, leading to the restoration of the normal functional selection of IDCs from progenitor cells and the regulation of the TH1/TH2 network balance. However, IFNβ-1a treatment may also be responsible for the in vivo suppression of CD30-mediated TH1-DC functions in immune activation. TH1-DC functions are involved in the induction of T-regulatory cells for the physiological deletion of self-aggressive cells. Conclusion: We conclude that CD30 is an important costimulatory molecule and marker of a regulatory subpopulation of DCs which induces and modulates immune cells involved in the maintenance of the physiological balance between TH1/TH2 immune responses and tolerance. Elucidating the mechanisms restoring DC and T-regulatory cell function could lead to more effective therapy and strategies for the prevention and treatment of immunopathological conditions such as autoimmunity, transplant rejection, allergy and tumors.

          Related collections

          Most cited references 32

          • Record: found
          • Abstract: not found
          • Article: not found

          The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin's disease and a subset of normal lymphoid cells.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prostaglandin E(2) is a selective inducer of interleukin-12 p40 (IL-12p40) production and an inhibitor of bioactive IL-12p70 heterodimer.

              Interleukin-12 p70 (IL-12p70) heterodimer, composed of p35 and p40 subunits, is a major Th1-driving cytokine, promoting cell-mediated immunity. In contrast, IL-12p40 homodimer, secreted by APC in the absence of p35 expression, and free p40 monomer do not mediate IL-12 activity but act as IL-12 antagonists. Here it is reported that prostaglandin E(2) (PGE(2)), an inflammatory mediator with a previously known Th2-driving function, dose-dependently enhances the IL-12p40 mRNA expression and the secretion of IL-12p40 protein in human tumor necrosis factor-alpha (TNFalpha)-stimulated immature dendritic cells (DCs). This effect is selective and is not accompanied by the induction of IL-12p35 expression or by secretion of IL-12p70 heterodimer. Inability of TNFalpha/PGE(2) to induce IL-12p70 was not compensated by interferon gamma (IFNgamma), which strongly enhanced the lipopolysaccharide (LPS)-induced IL-12p70 production. In addition to the selective induction of IL-12p40 in TNFalpha-stimulated DCs, PGE(2) inhibited the production of IL-12p70 and IL-12p40 in DCs stimulated with LPS or CD40 ligand. These data suggest an additional level of the Th2-promoting activity of PGE(2), via selective induction of IL-12p40. Selective induction of IL-12p40 and suppression of bioactive IL-12p70 may have negative impact on anticancer vaccination with PGE(2)-matured DCs. (Blood. 2001;97:3466-3469)
                Bookmark

                Author and article information

                Journal
                NIM
                Neuroimmunomodulation
                10.1159/issn.1021-7401
                Neuroimmunomodulation
                S. Karger AG
                1021-7401
                1423-0216
                2005
                June 2005
                27 June 2005
                : 12
                : 4
                : 220-234
                Affiliations
                aIstituto CNR Trapianti d’Organo e l’Immunocitologia e bDipartimento di Neurologia dell’Università dell’Aquila, L’Aquila, Italia
                Article
                85654 Neuroimmunomodulation 2005;12:220–234
                10.1159/000085654
                15990453
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 4, Tables: 4, References: 47, Pages: 15
                Categories
                Original Paper

                Comments

                Comment on this article