15
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Post-acute effects of SARS-CoV-2 infection in individuals not requiring hospital admission: a Danish population-based cohort study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Individuals admitted to hospital for COVID-19 might have persisting symptoms (so-called long COVID) and delayed complications after discharge. However, little is known regarding the risk for those not admitted to hospital. We therefore examined prescription drug and health-care use after SARS-CoV-2 infection not requiring hospital admission.

          Methods

          This was a population-based cohort study using the Danish prescription, patient, and health insurance registries. All individuals with a positive or negative RT-PCR test for SARS-CoV-2 in Denmark between Feb 27 and May 31, 2020, were eligible for inclusion. Outcomes of interest were delayed acute complications, chronic disease, hospital visits due to persisting symptoms, and prescription drug use. We used data from non-hospitalised SARS-CoV-2-positive and matched SARS-CoV-2-negative individuals from 2 weeks to 6 months after a SARS-CoV-2 test to obtain propensity score-weighted risk differences (RDs) and risk ratios (RRs) for initiation of 14 drug groups and 27 hospital diagnoses indicative of potential post-acute effects. We also calculated prior event rate ratio-adjusted rate ratios of overall health-care use. This study is registered in the EU Electronic Register of Post-Authorisation Studies (EUPAS37658).

          Findings

          10 498 eligible individuals tested positive for SARS-CoV-2 in Denmark from Feb 27 to May 31, 2020, of whom 8983 (85·6%) were alive and not admitted to hospital 2 weeks after their positive test. The matched SARS-CoV-2-negative reference population not admitted to hospital consisted of 80 894 individuals. Compared with SARS-CoV-2-negative individuals, SARS-CoV-2-positive individuals were not at an increased risk of initiating new drugs (RD <0·1%) except bronchodilating agents, specifically short-acting β2-agonists (117 [1·7%] of 6935 positive individuals vs 743 [1·3%] of 57 206 negative individuals; RD +0·4% [95% CI 0·1–0·7]; RR 1·32 [1·09–1·60]) and triptans (33 [0·4%] of 8292 vs 198 [0·3%] of 72 828; RD +0·1% [0·0–0·3]; RR 1·55 [1·07–2·25]). There was an increased risk of receiving hospital diagnoses of dyspnoea (103 [1·2%] of 8676 vs 499 [0·7%] of 76 728; RD +0·6% [0·4–0·8]; RR 2·00 [1·62–2·48]) and venous thromboembolism (20 [0·2%] of 8785 vs 110 [0·1%] of 78 872; RD +0·1% [0·0–0·2]; RR 1·77 [1·09–2·86]) for SARS-CoV-2-positive individuals compared with negative individuals, but no increased risk of other diagnoses. Prior event rate ratio-adjusted rate ratios of overall general practitioner visits (1·18 [95% CI 1·15–1·22]) and outpatient hospital visits (1·10 [1·05–1·16]), but not hospital admission, showed increases among SARS-CoV-2-positive individuals compared with SARS-CoV-2-negative individuals.

          Interpretation

          The absolute risk of severe post-acute complications after SARS-CoV-2 infection not requiring hospital admission is low. However, increases in visits to general practitioners and outpatient hospital visits could indicate COVID-19 sequelae.

          Funding

          None.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          6-month consequences of COVID-19 in patients discharged from hospital: a cohort study

          Background The long-term health consequences of COVID-19 remain largely unclear. The aim of this study was to describe the long-term health consequences of patients with COVID-19 who have been discharged from hospital and investigate the associated risk factors, in particular disease severity. Methods We did an ambidirectional cohort study of patients with confirmed COVID-19 who had been discharged from Jin Yin-tan Hospital (Wuhan, China) between Jan 7, 2020, and May 29, 2020. Patients who died before follow-up, patients for whom follow-up would be difficult because of psychotic disorders, dementia, or re-admission to hospital, those who were unable to move freely due to concomitant osteoarthropathy or immobile before or after discharge due to diseases such as stroke or pulmonary embolism, those who declined to participate, those who could not be contacted, and those living outside of Wuhan or in nursing or welfare homes were all excluded. All patients were interviewed with a series of questionnaires for evaluation of symptoms and health-related quality of life, underwent physical examinations and a 6-min walking test, and received blood tests. A stratified sampling procedure was used to sample patients according to their highest seven-category scale during their hospital stay as 3, 4, and 5–6, to receive pulmonary function test, high resolution CT of the chest, and ultrasonography. Enrolled patients who had participated in the Lopinavir Trial for Suppression of SARS-CoV-2 in China received severe acute respiratory syndrome coronavirus 2 antibody tests. Multivariable adjusted linear or logistic regression models were used to evaluate the association between disease severity and long-term health consequences. Findings In total, 1733 of 2469 discharged patients with COVID-19 were enrolled after 736 were excluded. Patients had a median age of 57·0 (IQR 47·0–65·0) years and 897 (52%) were men. The follow-up study was done from June 16, to Sept 3, 2020, and the median follow-up time after symptom onset was 186·0 (175·0–199·0) days. Fatigue or muscle weakness (63%, 1038 of 1655) and sleep difficulties (26%, 437 of 1655) were the most common symptoms. Anxiety or depression was reported among 23% (367 of 1617) of patients. The proportions of median 6-min walking distance less than the lower limit of the normal range were 24% for those at severity scale 3, 22% for severity scale 4, and 29% for severity scale 5–6. The corresponding proportions of patients with diffusion impairment were 22% for severity scale 3, 29% for scale 4, and 56% for scale 5–6, and median CT scores were 3·0 (IQR 2·0–5·0) for severity scale 3, 4·0 (3·0–5·0) for scale 4, and 5·0 (4·0–6·0) for scale 5–6. After multivariable adjustment, patients showed an odds ratio (OR) 1·61 (95% CI 0·80–3·25) for scale 4 versus scale 3 and 4·60 (1·85–11·48) for scale 5–6 versus scale 3 for diffusion impairment; OR 0·88 (0·66–1·17) for scale 4 versus scale 3 and OR 1·77 (1·05–2·97) for scale 5–6 versus scale 3 for anxiety or depression, and OR 0·74 (0·58–0·96) for scale 4 versus scale 3 and 2·69 (1·46–4·96) for scale 5–6 versus scale 3 for fatigue or muscle weakness. Of 94 patients with blood antibodies tested at follow-up, the seropositivity (96·2% vs 58·5%) and median titres (19·0 vs 10·0) of the neutralising antibodies were significantly lower compared with at the acute phase. 107 of 822 participants without acute kidney injury and with estimated glomerular filtration rate (eGFR) 90 mL/min per 1·73 m2 or more at acute phase had eGFR less than 90 mL/min per 1·73 m2 at follow-up. Interpretation At 6 months after acute infection, COVID-19 survivors were mainly troubled with fatigue or muscle weakness, sleep difficulties, and anxiety or depression. Patients who were more severely ill during their hospital stay had more severe impaired pulmonary diffusion capacities and abnormal chest imaging manifestations, and are the main target population for intervention of long-term recovery. Funding National Natural Science Foundation of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, National Key Research and Development Program of China, Major Projects of National Science and Technology on New Drug Creation and Development of Pulmonary Tuberculosis, and Peking Union Medical College Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Persistent Symptoms in Patients After Acute COVID-19

            This case series describes COVID-19 symptoms persisting a mean of 60 days after onset among Italian patients previously discharged from COVID-19 hospitalization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples

              The propensity score is a subject's probability of treatment, conditional on observed baseline covariates. Conditional on the true propensity score, treated and untreated subjects have similar distributions of observed baseline covariates. Propensity-score matching is a popular method of using the propensity score in the medical literature. Using this approach, matched sets of treated and untreated subjects with similar values of the propensity score are formed. Inferences about treatment effect made using propensity-score matching are valid only if, in the matched sample, treated and untreated subjects have similar distributions of measured baseline covariates. In this paper we discuss the following methods for assessing whether the propensity score model has been correctly specified: comparing means and prevalences of baseline characteristics using standardized differences; ratios comparing the variance of continuous covariates between treated and untreated subjects; comparison of higher order moments and interactions; five-number summaries; and graphical methods such as quantile–quantile plots, side-by-side boxplots, and non-parametric density plots for comparing the distribution of baseline covariates between treatment groups. We describe methods to determine the sampling distribution of the standardized difference when the true standardized difference is equal to zero, thereby allowing one to determine the range of standardized differences that are plausible with the propensity score model having been correctly specified. We highlight the limitations of some previously used methods for assessing the adequacy of the specification of the propensity-score model. In particular, methods based on comparing the distribution of the estimated propensity score between treated and untreated subjects are uninformative. Copyright © 2009 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                Lancet Infect Dis
                Lancet Infect Dis
                The Lancet. Infectious Diseases
                Elsevier Ltd.
                1473-3099
                1474-4457
                10 May 2021
                10 May 2021
                Affiliations
                [a ]Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
                [b ]Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
                [c ]Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
                [d ]Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
                [e ]Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Copenhagen, Denmark
                [f ]Department of Public Health, University of Copenhagen, Copenhagen, Denmark
                [g ]Data Analytics Centre, Danish Medicines Agency, Copenhagen, Denmark
                [h ]Department of Medical Evaluation and Biostatistics, Danish Medicines Agency, Copenhagen, Denmark
                [i ]Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
                Author notes
                [* ]Correspondence to: Prof Anton Pottegård, Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, 5000 Odense C, Denmark
                Article
                S1473-3099(21)00211-5
                10.1016/S1473-3099(21)00211-5
                8110209
                33984263
                c28055e1-341b-48bf-83ff-5f43317f8d7d
                © 2021 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Articles

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article