37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The CYCLIN-A CYCA1;2/TAM Is Required for the Meiosis I to Meiosis II Transition and Cooperates with OSD1 for the Prophase to First Meiotic Division Transition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Meiosis halves the chromosome number because its two divisions follow a single round of DNA replication. This process involves two cell transitions, the transition from prophase to the first meiotic division (meiosis I) and the unique meiosis I to meiosis II transition. We show here that the A-type cyclin CYCA1;2/TAM plays a major role in both transitions in Arabidopsis. A series of tam mutants failed to enter meiosis II and thus produced diploid spores and functional diploid gametes. These diploid gametes had a recombined genotype produced through the single meiosis I division. In addition, by combining the tam-2 mutation with AtSpo11-1 and Atrec8, we obtained plants producing diploid gametes through a mitotic-like division that were genetically identical to their parents. Thus tam alleles displayed phenotypes very similar to that of the previously described osd1 mutant. Combining tam and osd1 mutations leads to a failure in the prophase to meiosis I transition during male meiosis and to the production of tetraploid spores and gametes. This suggests that TAM and OSD1 are involved in the control of both meiotic transitions.

          Author Summary

          In the life cycle of sexual organisms, a specialized cell division—meiosis—reduces the number of chromosomes from two sets (2n, diploid) to one set (n, haploid), while fertilization restores the original chromosome number. Meiosis reduces ploidy because it consists of two divisions following a single DNA replication. In this study, we identified genes that control the entry into the first and the second meiotic division in the model plant Arabidopsis thaliana. Plants lacking the CYCA1;2 gene execute a single division during meiosis producing functional diploid gametes and polyploid plants in the next generation. By combining this mutation with two others that affect key meiotic processes, we generated plants that produce diploid gametes through a mitotic-like division that are genetically identical to their parents. Furthermore, plants lacking CYCA1;2 and another previously described gene ( OSD1) undergo no divisions during male meiosis, producing tetraploid pollen grains.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide insertional mutagenesis of Arabidopsis thaliana.

          J Alonso (2003)
          Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell cycle regulation in plant development.

            Cell cycle regulation is of pivotal importance for plant growth and development. Although plant cell division shares basic mechanisms with all eukaryotes, plants have evolved novel molecules orchestrating the cell cycle. Some regulatory proteins, such as cyclins and inhibitors of cyclin-dependent kinases, are particularly numerous in plants, possibly reflecting the remarkable ability of plants to modulate their postembryonic development. Many plant cells also can continue DNA replication in the absence of mitosis, a process known as endoreduplication, causing polyploidy. Here, we review the molecular mechanisms that regulate cell division and endoreduplication and we discuss our understanding, albeit very limited, on how the cell cycle is integrated with plant development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A high-throughput Arabidopsis reverse genetics system.

              A collection of Arabidopsis lines with T-DNA insertions in known sites was generated to increase the efficiency of functional genomics. A high-throughput modified thermal asymmetric interlaced (TAIL)-PCR protocol was developed and used to amplify DNA fragments flanking the T-DNA left borders from approximately 100000 transformed lines. A total of 85108 TAIL-PCR products from 52964 T-DNA lines were sequenced and compared with the Arabidopsis genome to determine the positions of T-DNAs in each line. Predicted T-DNA insertion sites, when mapped, showed a bias against predicted coding sequences. Predicted insertion mutations in genes of interest can be identified using Arabidopsis Gene Index name searches or by BLAST (Basic Local Alignment Search Tool) search. Insertions can be confirmed by simple PCR assays on individual lines. Predicted insertions were confirmed in 257 of 340 lines tested (76%). This resource has been named SAIL (Syngenta Arabidopsis Insertion Library) and is available to the scientific community at www.tmri.org.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                June 2010
                June 2010
                17 June 2010
                : 6
                : 6
                : e1000989
                Affiliations
                [1 ]Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
                [2 ]Department of Biology and the Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
                [3 ]Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
                Stanford University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: IdE GPC RM. Performed the experiments: IdE LC SJ CG CH YS JPCT LEB RM. Analyzed the data: IdE LC CG GPC RM. Contributed reagents/materials/analysis tools: GPC. Wrote the paper: LC GPC RM.

                Article
                10-PLGE-RA-2368R2
                10.1371/journal.pgen.1000989
                2887465
                20585549
                c2835859-510c-46ec-b182-da0565ef1917
                d'Erfurth et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 January 2010
                : 14 May 2010
                Page count
                Pages: 12
                Categories
                Research Article
                Biotechnology/Plant Biotechnology
                Cell Biology/Cell Growth and Division
                Genetics and Genomics/Gene Discovery
                Genetics and Genomics/Gene Function
                Genetics and Genomics/Plant Genomes and Evolution

                Genetics
                Genetics

                Comments

                Comment on this article