76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Randomized Trial of Therapies for Type 2 Diabetes and Coronary Artery Disease

      New England Journal of Medicine
      Massachusetts Medical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Optimal treatment for patients with both type 2 diabetes mellitus and stable ischemic heart disease has not been established. We randomly assigned 2368 patients with both type 2 diabetes and heart disease to undergo either prompt revascularization with intensive medical therapy or intensive medical therapy alone and to undergo either insulin-sensitization or insulin-provision therapy. Primary end points were the rate of death and a composite of death, myocardial infarction, or stroke (major cardiovascular events). Randomization was stratified according to the choice of percutaneous coronary intervention (PCI) or coronary-artery bypass grafting (CABG) as the more appropriate intervention. At 5 years, rates of survival did not differ significantly between the revascularization group (88.3%) and the medical-therapy group (87.8%, P=0.97) or between the insulin-sensitization group (88.2%) and the insulin-provision group (87.9%, P=0.89). The rates of freedom from major cardiovascular events also did not differ significantly among the groups: 77.2% in the revascularization group and 75.9% in the medical-treatment group (P=0.70) and 77.7% in the insulin-sensitization group and 75.4% in the insulin-provision group (P=0.13). In the PCI stratum, there was no significant difference in primary end points between the revascularization group and the medical-therapy group. In the CABG stratum, the rate of major cardiovascular events was significantly lower in the revascularization group (22.4%) than in the medical-therapy group (30.5%, P=0.01; P=0.002 for interaction between stratum and study group). Adverse events and serious adverse events were generally similar among the groups, although severe hypoglycemia was more frequent in the insulin-provision group (9.2%) than in the insulin-sensitization group (5.9%, P=0.003). Overall, there was no significant difference in the rates of death and major cardiovascular events between patients undergoing prompt revascularization and those undergoing medical therapy or between strategies of insulin sensitization and insulin provision. (ClinicalTrials.gov number, NCT00006305.) 2009 Massachusetts Medical Society

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Banting lecture 1988. Role of insulin resistance in human disease.

          G M Reaven (1988)
          Resistance to insulin-stimulated glucose uptake is present in the majority of patients with impaired glucose tolerance (IGT) or non-insulin-dependent diabetes mellitus (NIDDM) and in approximately 25% of nonobese individuals with normal oral glucose tolerance. In these conditions, deterioration of glucose tolerance can only be prevented if the beta-cell is able to increase its insulin secretory response and maintain a state of chronic hyperinsulinemia. When this goal cannot be achieved, gross decompensation of glucose homeostasis occurs. The relationship between insulin resistance, plasma insulin level, and glucose intolerance is mediated to a significant degree by changes in ambient plasma free-fatty acid (FFA) concentration. Patients with NIDDM are also resistant to insulin suppression of plasma FFA concentration, but plasma FFA concentrations can be reduced by relatively small increments in insulin concentration. Consequently, elevations of circulating plasma FFA concentration can be prevented if large amounts of insulin can be secreted. If hyperinsulinemia cannot be maintained, plasma FFA concentration will not be suppressed normally, and the resulting increase in plasma FFA concentration will lead to increased hepatic glucose production. Because these events take place in individuals who are quite resistant to insulin-stimulated glucose uptake, it is apparent that even small increases in hepatic glucose production are likely to lead to significant fasting hyperglycemia under these conditions. Although hyperinsulinemia may prevent frank decompensation of glucose homeostasis in insulin-resistant individuals, this compensatory response of the endocrine pancreas is not without its price. Patients with hypertension, treated or untreated, are insulin resistant, hyperglycemic, and hyperinsulinemic. In addition, a direct relationship between plasma insulin concentration and blood pressure has been noted. Hypertension can also be produced in normal rats when they are fed a fructose-enriched diet, an intervention that also leads to the development of insulin resistance and hyperinsulinemia. The development of hypertension in normal rats by an experimental manipulation known to induce insulin resistance and hyperinsulinemia provides further support for the view that the relationship between the three variables may be a causal one.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of intensive glucose lowering in type 2 diabetes.

            Epidemiologic studies have shown a relationship between glycated hemoglobin levels and cardiovascular events in patients with type 2 diabetes. We investigated whether intensive therapy to target normal glycated hemoglobin levels would reduce cardiovascular events in patients with type 2 diabetes who had either established cardiovascular disease or additional cardiovascular risk factors. In this randomized study, 10,251 patients (mean age, 62.2 years) with a median glycated hemoglobin level of 8.1% were assigned to receive intensive therapy (targeting a glycated hemoglobin level below 6.0%) or standard therapy (targeting a level from 7.0 to 7.9%). Of these patients, 38% were women, and 35% had had a previous cardiovascular event. The primary outcome was a composite of nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes. The finding of higher mortality in the intensive-therapy group led to a discontinuation of intensive therapy after a mean of 3.5 years of follow-up. At 1 year, stable median glycated hemoglobin levels of 6.4% and 7.5% were achieved in the intensive-therapy group and the standard-therapy group, respectively. During follow-up, the primary outcome occurred in 352 patients in the intensive-therapy group, as compared with 371 in the standard-therapy group (hazard ratio, 0.90; 95% confidence interval [CI], 0.78 to 1.04; P=0.16). At the same time, 257 patients in the intensive-therapy group died, as compared with 203 patients in the standard-therapy group (hazard ratio, 1.22; 95% CI, 1.01 to 1.46; P=0.04). Hypoglycemia requiring assistance and weight gain of more than 10 kg were more frequent in the intensive-therapy group (P<0.001). As compared with standard therapy, the use of intensive therapy to target normal glycated hemoglobin levels for 3.5 years increased mortality and did not significantly reduce major cardiovascular events. These findings identify a previously unrecognized harm of intensive glucose lowering in high-risk patients with type 2 diabetes. (ClinicalTrials.gov number, NCT00000620.) 2008 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes

              In patients with type 2 diabetes, the effects of intensive glucose control on vascular outcomes remain uncertain. We randomly assigned 11,140 patients with type 2 diabetes to undergo either standard glucose control or intensive glucose control, defined as the use of gliclazide (modified release) plus other drugs as required to achieve a glycated hemoglobin value of 6.5% or less. Primary end points were composites of major macrovascular events (death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke) and major microvascular events (new or worsening nephropathy or retinopathy), assessed both jointly and separately. After a median of 5 years of follow-up, the mean glycated hemoglobin level was lower in the intensive-control group (6.5%) than in the standard-control group (7.3%). Intensive control reduced the incidence of combined major macrovascular and microvascular events (18.1%, vs. 20.0% with standard control; hazard ratio, 0.90; 95% confidence interval [CI], 0.82 to 0.98; P=0.01), as well as that of major microvascular events (9.4% vs. 10.9%; hazard ratio, 0.86; 95% CI, 0.77 to 0.97; P=0.01), primarily because of a reduction in the incidence of nephropathy (4.1% vs. 5.2%; hazard ratio, 0.79; 95% CI, 0.66 to 0.93; P=0.006), with no significant effect on retinopathy (P=0.50). There were no significant effects of the type of glucose control on major macrovascular events (hazard ratio with intensive control, 0.94; 95% CI, 0.84 to 1.06; P=0.32), death from cardiovascular causes (hazard ratio with intensive control, 0.88; 95% CI, 0.74 to 1.04; P=0.12), or death from any cause (hazard ratio with intensive control, 0.93; 95% CI, 0.83 to 1.06; P=0.28). Severe hypoglycemia, although uncommon, was more common in the intensive-control group (2.7%, vs. 1.5% in the standard-control group; hazard ratio, 1.86; 95% CI, 1.42 to 2.40; P<0.001). A strategy of intensive glucose control, involving gliclazide (modified release) and other drugs as required, that lowered the glycated hemoglobin value to 6.5% yielded a 10% relative reduction in the combined outcome of major macrovascular and microvascular events, primarily as a consequence of a 21% relative reduction in nephropathy. (ClinicalTrials.gov number, NCT00145925.) 2008 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                June 11 2009
                June 11 2009
                : 360
                : 24
                : 2503-2515
                Article
                10.1056/NEJMoa0805796
                2863990
                19502645
                c28891ae-684d-44fd-8b43-8e8a8de856f0
                © 2009
                History

                Comments

                Comment on this article