17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amelioration of murine sickle cell disease by nonablative conditioning and γ-globin gene-corrected bone marrow cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patients with severe sickle cell disease (SCD) are candidates for gene therapy using autologous hematopoietic stem cells (HSCs), but concomitant multi-organ disease may contraindicate pretransplant conditioning with full myeloablation. We tested whether nonmyeloablative conditioning, a regimen used successfully for allogeneic bone marrow transplantation of adult SCD patients, allows engraftment of γ-globin gene-corrected cells to a therapeutic level in the Berkeley mouse model of SCD. Animals transplanted according to this regimen averaged 35% engraftment of transduced hematopoietic stem cells with an average vector copy < 2.0. Fetal hemoglobin (HbF) levels ranged from 20 to 44% of total hemoglobin and approximately two-thirds of circulating red blood cells expressed HbF detected by immunofluorescence (F-cells). Gene therapy treatment of SCD mice ameliorated anemia, reduced hyperleukocytosis, improved renal function, and reduced iron accumulation in liver, spleen, and kidneys. Thus, modest levels of chimerism with donor cells expressing high levels of HbF from an insulated γ-globin lentiviral vector can improve the pathology of SCD in mice, thereby illustrating a potentially safe and effective strategy for gene therapy in humans.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells.

          Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the β-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the β-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: results of a 17-year, single-center trial (LaSHS).

            The aim of this prospective study was to evaluate the long-term efficacy and safety of hydroxyurea (HU) in patients with sickle cell disease (SCD). Thirty-four patients with sickle cell anemia (hemoglobin S [HbS]/HbS), 131 with HbS/beta(0)-thal, and 165 with HbS/beta(+)-thal participated in this trial. HU was administered to 131 patients, whereas 199 patients were conventionally treated. The median follow-up period was 8 years for HU patients and 5 years for non-HU patients. HU produced a dramatic reduction in the frequency of severe painful crises, transfusion requirements, hospital admissions, and incidence of acute chest syndrome. The probability of 10-year survival was 86% and 65% for HU and non-HU patients, respectively (P = .001), although HU patients had more severe forms of SCD. The 10-year probability of survival for HbS/HbS, HbS/beta (0)-thal, and HbS/IVSI-110 patients was 100%, 87%, and 82%, respectively, for HU patients and 10%, 54%, and 66%, for non-HU patients. The multivariate analysis showed that fetal hemoglobin values at baseline and percentage change of lactate dehydrogenase between baseline and 6 months were independently predicted for survival in the HU group. These results highlight the beneficial effect of HU, which seems to modify the natural history of SCD and raise the issue of expanding its use in all SCD patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Allogeneic hematopoietic stem-cell transplantation for sickle cell disease.

              Myeloablative allogeneic hematopoietic stem-cell transplantation is curative in children with sickle cell disease, but in adults the procedure is unduly toxic. Graft rejection and graft-versus-host disease (GVHD) are additional barriers to its success. We performed nonmyeloablative stem-cell transplantation in adults with sickle cell disease. Ten adults (age range, 16 to 45 years) with severe sickle cell disease underwent nonmyeloablative transplantation with CD34+ peripheral-blood stem cells, mobilized by granulocyte colony-stimulating factor (G-CSF), which were obtained from HLA-matched siblings. The patients received 300 cGy of total-body irradiation plus alemtuzumab before transplantation, and sirolimus was administered afterward. All 10 patients were alive at a median follow-up of 30 months after transplantation (range, 15 to 54). Nine patients had long-term, stable donor lymphohematopoietic engraftment at levels that sufficed to reverse the sickle cell disease phenotype. Mean (+/-SE) donor-recipient chimerism for T cells (CD3+) and myeloid cells (CD14+15+) was 53.3+/-8.6% and 83.3+/-10.3%, respectively, in the nine patients whose grafts were successful. Hemoglobin values before transplantation and at the last follow-up assessment were 9.0+/-0.3 and 12.6+/-0.5 g per deciliter, respectively. Serious adverse events included the narcotic-withdrawal syndrome and sirolimus-associated pneumonitis and arthralgia. Neither acute nor chronic GVHD developed in any patient. A protocol for nonmyeloablative allogeneic hematopoietic stem-cell transplantation that includes total-body irradiation and treatment with alemtuzumab and sirolimus can achieve stable, mixed donor-recipient chimerism and reverse the sickle cell phenotype. (ClinicalTrials.gov number, NCT00061568.) 2009 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Mol Ther Methods Clin Dev
                Mol Ther Methods Clin Dev
                Molecular Therapy. Methods & Clinical Development
                Nature Publishing Group
                2329-0501
                02 December 2015
                2015
                : 2
                : 15045
                Affiliations
                [1 ]Department of Hematology, St. Jude Children’s Research Hospital , Memphis, TN, USA
                [2 ]Department of Pathology, St. Jude Children’s Research Hospital , Memphis, TN, USA
                [3 ]Department of Epidemiology and Biostatistics, University of Memphis School of Public Health , Memphis, TN, USA
                [4 ]Department of Medical Microbiology, Immunology and Cell Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine , Springfield, IL, USA
                Author notes
                Article
                mtm201545
                10.1038/mtm.2015.45
                4667717
                26665131
                c28a3781-cec1-4495-ba2c-a24130e6dd3d
                Copyright © 2015 Official journal of the American Society of Gene & Cell Therapy

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 19 July 2015
                : 24 September 2015
                : 12 October 2015
                Categories
                Article

                Comments

                Comment on this article