2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alpha-Cyclodextrin Attenuates the Glycemic and Insulinemic Impact of White Bread in Healthy Male Volunteers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The demonstration of a physiological benefit has recently become an indispensible element of the definition of dietary fibers. In the here-reported pilot study, the effect of alpha-cyclodextrin (alpha-CD) on the postprandial glycemic and insulinemic effect of starch was examined. Twelve fasted, healthy male volunteers received, on three subsequent days, a test breakfast consisting of (A) 100 g fresh white bread (providing 50 g starch) and 250 mL drinking water, (B) the same bread with a supplement of 10 g alpha-CD dissolved in the drinking water, and (C) 25 g alpha-CD dissolved in drinking water. Capillary and venous blood was sampled before the breakfast and in regular intervals for a three-hour period thereafter. Glucose was determined in capillary blood and insulin in the plasma of venous blood samples. Breakfast (A) led to a rapid rise in blood glucose and insulin. In breakfast (B), alpha-CD reduced the areas under the curve of blood glucose and insulin significantly by 59% and 57%, respectively, demonstrating that alpha-CD inhibits and thereby delays starch digestion. Treatment (C) was not associated with a rise of blood glucose. Hence, alpha-CD complies with the current definition of dietary fiber in every respect.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Glycemic index and obesity.

          Although weight loss can be achieved by any means of energy restriction, current dietary guidelines have not prevented weight regain or population-level increases in obesity and overweight. Many high-carbohydrate, low-fat diets may be counterproductive to weight control because they markedly increase postprandial hyperglycemia and hyperinsulinemia. Many high-carbohydrate foods common to Western diets produce a high glycemic response [high-glycemic-index (GI) foods], promoting postprandial carbohydrate oxidation at the expense of fat oxidation, thus altering fuel partitioning in a way that may be conducive to body fat gain. In contrast, diets based on low-fat foods that produce a low glycemic response (low-GI foods) may enhance weight control because they promote satiety, minimize postprandial insulin secretion, and maintain insulin sensitivity. This hypothesis is supported by several intervention studies in humans in which energy-restricted diets based on low-GI foods produced greater weight loss than did equivalent diets based on high-GI foods. Long-term studies in animal models have also shown that diets based on high-GI starches promote weight gain, visceral adiposity, and higher concentrations of lipogenic enzymes than do isoenergetic, macronutrientcontrolled, low-GI-starch diets. In a study of healthy pregnant women, a high-GI diet was associated with greater weight at term than was a nutrient-balanced, low-GI diet. In a study of diet and complications of type 1 diabetes, the GI of the overall diet was an independent predictor of waist circumference in men. These findings provide the scientific rationale to justify randomized, controlled, multicenter intervention studies comparing the effects of conventional and low-GI diets on weight control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Meta-analysis of the health effects of using the glycaemic index in meal-planning.

            Diabetes mellitus and CVD are some of the leading causes of mortality and morbidity. Accumulating data indicate that a diet characterised by low-glycaemic index (GI) foods may improve the management of diabetes or lipid profiles. The objective of the present meta-analysis was to critically analyse the scientific evidence that low-GI diets have beneficial effects on carbohydrate and lipid metabolism compared with high-GI diets. We searched for randomised controlled trials with a crossover or parallel design published in English between 1981 and 2003, investigating the effect of low-GI v. high-GI diets on markers for carbohydrate and lipid metabolism. Unstandardised differences in mean values were examined using the random effects model. The main outcomes were fructosamine, glycated Hb (HbA1c), HDL-cholesterol, LDL-cholesterol, total cholesterol and triacylglycerol. Literature searches identified sixteen studies that met the strict inclusion criteria. Low-GI diets significantly reduced fructosamine by -0.1 (95 % CI -0.20, 0.00) mmol/l (P=0.05), HbA1c by 0.27 (95 % CI -0.5, -0.03) % (P=0.03), total cholesterol by -0.33 (95 % CI -0.47, -0.18) mmol/l (P<0.0001) and tended to reduce LDL-cholesterol in type 2 diabetic subjects by -0.15 (95 % CI -0.31, -0.00) mmol/l (P=0.06) compared with high-GI diets. No changes were observed in HDL-cholesterol and triacylglycerol concentrations. No substantial heterogeneity was detected, suggesting that the effects of low-GI diets in these studies were uniform. Results of the present meta-analysis support the use of the GI as a scientifically based tool to enable selection of carbohydrate-containing foods to reduce total cholesterol and to improve overall metabolic control of diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effect of dietary fibre on reducing the glycaemic index of bread.

              As bread is the most relevant source of available carbohydrates in the diet and as lowering dietary glycaemic index (GI) is considered favourable to health, many studies have been carried out in order to decrease the GI of bread. The most relevant strategy that has been applied so far is the addition of fibre-rich flours or pure dietary fibre. However, the effectiveness of dietary fibre in bread in reducing the GI is controversial. The purpose of the present review was to discuss critically the effects obtained by adding different kinds of fibre to bread in order to modulate its glycaemic response. The studies were selected because they analysed in vivo whether or not dietary fibre, naturally present or added during bread making, could improve the glucose response. The reviewed literature suggests that the presence of intact structures not accessible to human amylases, as well as a reduced pH that may delay gastric emptying or create a barrier to starch digestion, seems to be more effective than dietary fibre per se in improving glucose metabolism, irrespective of the type of cereal. Moreover, the incorporation of technologically extracted cereal fibre fractions, the addition of fractions from legumes or of specifically developed viscous or non-viscous fibres also constitute effective strategies. However, when fibres or wholemeal is included in bread making to affect the glycaemic response, the manufacturing protocol needs to reconsider several technological parameters in order to obtain high-quality and consumer-acceptable breads.
                Bookmark

                Author and article information

                Journal
                Foods
                Foods
                foods
                Foods
                MDPI
                2304-8158
                07 January 2020
                January 2020
                : 9
                : 1
                : 62
                Affiliations
                [1 ]Bioresco Ltd., 4054 Basel, Switzerland
                [2 ]Gastro Center, 2502 Biel, Switzerland; dr.diamantis@ 123456hin.ch
                [3 ]Datagen AG, 3930 Visp, Switzerland; werner.venetz@ 123456datagen.net
                Author notes
                [* ]Correspondence: contact@ 123456bioresco.ch
                Author information
                https://orcid.org/0000-0002-1130-0290
                Article
                foods-09-00062
                10.3390/foods9010062
                7023330
                31936085
                c29024e7-2a07-4dc1-a84d-712402706388
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 November 2019
                : 03 January 2020
                Categories
                Article

                alpha-cyclodextrin,dietary fiber,glycemic response,insulinemic response,amylase,digestion

                Comments

                Comment on this article