67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cargo and Dynamin Regulate Clathrin-Coated Pit Maturation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Total internal reflection fluorescence microscopy (TIR-FM) has become a powerful tool for studying clathrin-mediated endocytosis. However, due to difficulties in tracking and quantifying their heterogeneous dynamic behavior, detailed analyses have been restricted to a limited number of selected clathrin-coated pits (CCPs). To identify intermediates in the formation of clathrin-coated vesicles and factors that regulate progression through these stages, we used particle-tracking software and statistical methods to establish an unbiased and complete inventory of all visible CCP trajectories. We identified three dynamically distinct CCP subpopulations: two short-lived subpopulations corresponding to aborted intermediates, and one longer-lived productive subpopulation. In a manner dependent on AP2 adaptor complexes, increasing cargo concentration significantly enhances the maturation efficiency of productive CCPs, but has only minor effects on their lifetimes. In contrast, small interfering RNA (siRNA) depletion of dynamin-2 GTPase and reintroduction of wild-type or mutant dynamin-1 revealed dynamin's role in controlling the turnover of abortive intermediates and the rate of CCP maturation. From these data, we infer the existence of an endocytic restriction or checkpoint, responsive to cargo and regulated by dynamin.

          Author Summary

          Clathrin-mediated endocytosis is the major pathway for the uptake of molecules into eukaryotic cells and is regulated by the GTPase dynamin. Adaptor proteins recruit clathrin to the plasma membrane, where clathrin-coated pits capture transmembrane cargo molecules, again via adaptors. The pits invaginate and pinch off to form clathrin-coated vesicles that carry the cargo into the cell. Live cell imaging has revealed striking heterogeneity in the dynamic behavior of clathrin-coated pits associated with the plasma membrane, yet the nature of this heterogeneity and its functional implications are unknown. We used particle-tracking software to establish an unbiased and complete inventory of the trajectories of clathrin-coated pits visible by total internal reflection fluorescence microscopy. Through statistical analyses, we identified three dynamically distinct subpopulations of coated pits: two short-lived subpopulations corresponding to aborted intermediates, and one longer-lived productive subpopulation. The proportion of each subpopulation and their lifetimes respond independently to molecular perturbations. As a result of systematic modulation of cargo concentration, adaptor levels, and analysis of dynamin mutants, we postulate the existence of an endocytic restriction or checkpoint that governs the rate of clathrin-mediated endocytosis by gating the maturation of clathrin-coated pits.

          Abstract

          Analysis of live-cell images reveals that clathrin-mediated endocytosis proceeds via distinct subpopulations of clathrin-coated pits, and suggests that an endocytosis check-point is regulated by dynamin and responsive to cargo load.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          Estimating the Dimension of a Model

            • Record: found
            • Abstract: found
            • Article: not found

            Endocytosis by random initiation and stabilization of clathrin-coated pits.

            Clathrin-coated vesicles carry traffic from the plasma membrane to endosomes. We report here the real-time visualization of cargo sorting and endocytosis by clathrin-coated pits in living cells. We have detected the formation of coats by monitoring incorporation of fluorescently tagged clathrin or its adaptor AP-2; we have also followed clathrin-mediated uptake of transferrin and of single LDL or reovirus particles. The intensity of a cargo-loaded clathrin cluster grows steadily during its lifetime, and the time required to complete assembly is proportional to the size of the cargo particle. These results are consistent with a nucleation-growth mechanism and an approximately constant growth rate. There are no strongly preferred nucleation sites. A proportion of the nucleation events are weak and short lived. Cargo incorporation occurs primarily or exclusively in a newly formed coated pit. Our data lead to a model in which coated pits initiate randomly but collapse unless stabilized, perhaps by cargo capture.
              • Record: found
              • Abstract: found
              • Article: not found

              Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits.

              As a final step in endocytosis, clathrin-coated pits must separate from the plasma membrane and move into the cytosol as a coated vesicle. Because these events involve minute movements that conventional light microscopy cannot resolve, they have not been observed directly and their dynamics remain unexplored. Here, we used evanescent field (EF) microscopy to observe single clathrin-coated pits or vesicles as they draw inwards from the plasma membrane and finally lose their coats. This inward movement occurred immediately after a brief burst of dynamin recruitment and was accompanied by transient actin assembly. Therefore, dynamin may provide the trigger and actin may provide the force for movement into the cytosol.

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                March 2009
                17 March 2009
                : 7
                : 3
                : e1000057
                Affiliations
                Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
                Princeton University, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: slschmid@ 123456scripps.edu (SLS); gdanuser@ 123456scripps.edu (GD)
                Article
                08-PLBI-RA-3646R2 plbi-07-03-15
                10.1371/journal.pbio.1000057
                2656549
                19296720
                c291116b-6700-45bc-a073-aa1fc3a4b8c3
                Copyright: © 2009 Loerke et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 August 2008
                : 28 January 2009
                Page count
                Pages: 12
                Categories
                Research Article
                Cell Biology
                Custom metadata
                Loerke D, Mettlen M, Yarar D, Jaqaman K, Jaqaman H, et al. (2009) Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol 7(3): e1000057. doi: 10.1371/journal.pbio.1000057

                Life sciences
                Life sciences

                Comments

                Comment on this article

                Related Documents Log