127
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Promoters active in interphase are bookmarked during mitosis by ubiquitination

      article-commentary

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We analyzed modification of chromatin by ubiquitination in human cells and whether this mark changes through the cell cycle. HeLa cells were synchronized at different stages and regions of the genome with ubiquitinated chromatin were identified by affinity purification coupled with next-generation sequencing. During interphase, ubiquitin marked the chromatin on the transcribed regions of ∼70% of highly active genes and deposition of this mark was sensitive to transcriptional inhibition. Promoters of nearly half of the active genes were highly ubiquitinated specifically during mitosis. The ubiquitination at the coding regions in interphase but not at promoters during mitosis was enriched for ubH2B and dependent on the presence of RNF20. Ubiquitin labeling of both promoters during mitosis and transcribed regions during interphase, correlated with active histone marks H3K4me3 and H3K36me3 but not a repressive histone modification, H3K27me3. The high level of ubiquitination at the promoter chromatin during mitosis was transient and was removed within 2 h after the cells exited mitosis and entered the next cell cycle. These results reveal that the ubiquitination of promoter chromatin during mitosis is a bookmark identifying active genes during chromosomal condensation in mitosis, and we suggest that this process facilitates transcriptional reactivation post-mitosis.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Role of histone H2A ubiquitination in Polycomb silencing.

          Covalent modification of histones is important in regulating chromatin dynamics and transcription. One example of such modification is ubiquitination, which mainly occurs on histones H2A and H2B. Although recent studies have uncovered the enzymes involved in histone H2B ubiquitination and a 'cross-talk' between H2B ubiquitination and histone methylation, the responsible enzymes and the functions of H2A ubiquitination are unknown. Here we report the purification and functional characterization of an E3 ubiquitin ligase complex that is specific for histone H2A. The complex, termed hPRC1L (human Polycomb repressive complex 1-like), is composed of several Polycomb-group proteins including Ring1, Ring2, Bmi1 and HPH2. hPRC1L monoubiquitinates nucleosomal histone H2A at lysine 119. Reducing the expression of Ring2 results in a dramatic decrease in the level of ubiquitinated H2A in HeLa cells. Chromatin immunoprecipitation analysis demonstrated colocalization of dRing with ubiquitinated H2A at the PRE and promoter regions of the Drosophila Ubx gene in wing imaginal discs. Removal of dRing in SL2 tissue culture cells by RNA interference resulted in loss of H2A ubiquitination concomitant with derepression of Ubx. Thus, our studies identify the H2A ubiquitin ligase, and link H2A ubiquitination to Polycomb silencing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation.

            In many higher organisms, 5%-15% of histone H2A is ubiquitylated at lysine 119 (uH2A). The function of this modification and the factors involved in its establishment, however, are unknown. Here we demonstrate that uH2A occurs on the inactive X chromosome in female mammals and that this correlates with recruitment of Polycomb group (PcG) proteins belonging to Polycomb repressor complex 1 (PRC1). Based on our observations, we tested the role of the PRC1 protein Ring1B and its closely related homolog Ring1A in H2A ubiquitylation. Analysis of Ring1B null embryonic stem (ES) cells revealed extensive depletion of global uH2A levels. On the inactive X chromosome, uH2A was maintained in Ring1A or Ring1B null cells, but not in double knockout cells, demonstrating an overlapping function for these proteins in development. These observations link H2A ubiquitylation, X inactivation, and PRC1 PcG function, suggesting an unanticipated and novel mechanism for chromatin-mediated heritable gene silencing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Histone H3 lysine 4 methylation patterns in higher eukaryotic genes.

              Lysine residues within histones can be mono-, di - or tri-methylated. In Saccharomyces cerevisiae tri-methylation of Lys 4 of histone H3 (K4/H3) correlates with transcriptional activity, but little is known about this methylation state in higher eukaryotes. Here, we examine the K4/H3 methylation pattern at the promoter and transcribed region of metazoan genes. We analysed chicken genes that are developmentally regulated, constitutively active or inactive. We found that the pattern of K4/H3 methylation shows similarities to S. cerevisiae. Tri-methyl K4/H3 peaks in the 5' transcribed region and active genes can be discriminated by high levels of tri-methyl K4/H3 compared with inactive genes. However, our results also identify clear differences compared to yeast, as significant levels of K4/H3 methylation are present on inactive genes within the beta-globin locus, implicating this modification in maintaining a 'poised' chromatin state. In addition, K4/H3 di-methylation is not genome-wide and di-methylation is not uniformly distributed throughout the transcribed region. These results indicate that in metazoa, di- and tri-methylation of K4/H3 is linked to active transcription and that significant differences exist in the genome-wide methylation pattern as compared with S. cerevisiae.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                November 2012
                November 2012
                30 August 2012
                30 August 2012
                : 40
                : 20
                : 10187-10202
                Affiliations
                Department of Biomedical Informatics and the Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +1 614 292 0523; Fax: +1 614 688 6600; Email: Jeffrey.Parvin@ 123456osumc.edu

                The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

                Present address: George F. Heine, Southern State Community College, Hillsboro, OH, USA.

                Article
                gks820
                10.1093/nar/gks820
                3488253
                22941662
                c291f43b-adc3-4715-a47d-83848b71eb18
                © The Author(s) 2012. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 May 2012
                : 31 July 2012
                : 4 August 2012
                Page count
                Pages: 16
                Categories
                Gene Regulation, Chromatin and Epigenetics

                Genetics
                Genetics

                Comments

                Comment on this article