+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Resveratrol-induced mitochondrial synthesis and autophagy in oocytes derived from early antral follicles of aged cows

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Mitochondrial numbers increase during oocyte growth. In this study, we collected oocytes and granulosa cell complexes (OGCs) from early antral follicles (EAFs) of aged cows (> 120 months of age) and examined the effects of resveratrol on mitochondrial generation, degradation, and quality in oocytes grown in vitro. We also examined the effects of resveratrol on gene expression of the granulosa cells. Resveratrol (20 µM) enhanced the expression of SIRT1 and induced autophagy in both granulosa cells and oocytes derived from aged cows. Culturing the OGCs with resveratrol increased mitochondrial DNA copy numbers in oocytes grown in vitro. Furthermore, resveratrol increased the ATP content in oocytes and improved the developmental ability of the oocytes to the blastocyst stage. Gene expression profiles in granulosa cells, as evaluated by next-generation sequencing technology, revealed that resveratrol enhanced the expression of EIF2-related genes but downregulated the expression of mammalian target of rapamycin (mTOR)-, inflammation-, and cholesterol homeostasis-related genes in granulosa cells. In conclusion, resveratrol affected both oocytes and granulosa cells derived from aged cows and improved the quality of oocytes grown in vitro through upregulation of mitochondrial biogenesis and degradation in growing oocytes and conditioning of granulosa cells.

          Related collections

          Most cited references 49

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network.

          Efficient control of energy metabolic homeostasis, enhanced stress resistance, and qualified cellular housekeeping are the hallmarks of improved healthspan and extended lifespan. AMPK signaling is involved in the regulation of all these characteristics via an integrated signaling network. Many studies with lower organisms have revealed that increased AMPK activity can extend the lifespan. Experiments in mammals have demonstrated that AMPK controls autophagy through mTOR and ULK1 signaling which augment the quality of cellular housekeeping. Moreover, AMPK-induced stimulation of FoxO/DAF-16, Nrf2/SKN-1, and SIRT1 signaling pathways improves cellular stress resistance. Furthermore, inhibition of NF-κB signaling by AMPK suppresses inflammatory responses. Emerging studies indicate that the responsiveness of AMPK signaling clearly declines with aging. The loss of sensitivity of AMPK activation to cellular stress impairs metabolic regulation, increases oxidative stress and reduces autophagic clearance. These age-related changes activate innate immunity defence, triggering a low-grade inflammation and metabolic disorders. We will review in detail the signaling pathways of this integrated network through which AMPK controls energy metabolism, autophagic degradation and stress resistance and ultimately the aging process. Copyright © 2011 Elsevier B.V. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: found

            Resveratrol-Activated AMPK/SIRT1/Autophagy in Cellular Models of Parkinson's Disease

            Excessive misfolded proteins and/or dysfunctional mitochondria, which may cause energy deficiency, have been implicated in the etiopathogenesis of Parkinson's disease (PD). Enhanced clearance of misfolded proteins or injured mitochondria via autophagy has been reported to have neuroprotective roles in PD models. The fact that resveratrol is a known compound with multiple beneficial effects similar to those associated with energy metabolism led us to explore whether neuroprotective effects of resveratrol are related to its role in autophagy regulation. We tested whether modulation of mammalian silent information regulator 2 (SIRT1) and/or metabolic energy sensor AMP-activated protein kinase (AMPK) are involved in autophagy induction by resveratrol, leading to neuronal survival. Our results showed that resveratrol protected against rotenone-induced apoptosis in SH-SY5Y cells and enhanced degradation of α-synucleins in α-synuclein-expressing PC12 cell lines via autophagy induction. We found that suppression of AMPK and/or SIRT1 caused decrease of protein level of LC3-II, indicating that AMPK and/or SIRT1 are required in resveratrol-mediated autophagy induction. Moreover, suppression of AMPK caused inhibition of SIRT1 activity and attenuated protective effects of resveratrol on rotenone-induced apoptosis, further suggesting that AMPK-SIRT1-autophagy pathway plays an important role in the neuroprotection by resveratrol on PD cellular models.
              • Record: found
              • Abstract: found
              • Article: not found

              Age-associated alteration of gene expression patterns in mouse oocytes.

              Decreasing oocyte competence with maternal aging is a major factor in human infertility. To investigate the age-dependent molecular changes in a mouse model, we compared the expression profiles of metaphase II oocytes collected from 5- to 6-week-old mice with those collected from 42- to 45-week-old mice using the NIA 22K 60-mer oligo microarray. Among approximately 11,000 genes whose transcripts were detected in oocytes, about 5% (530) showed statistically significant expression changes, excluding the possibility of global decline in transcript abundance. Consistent with the generally accepted view of aging, the differentially expressed genes included ones involved in mitochondrial function and oxidative stress. However, the expression of other genes involved in chromatin structure, DNA methylation, genome stability and RNA helicases was also altered, suggesting the existence of additional mechanisms for aging. Among the transcripts decreased with aging, we identified and characterized a group of new oocyte-specific genes, members of the human NACHT, leucine-rich repeat and PYD-containing (NALP) gene family. These results have implications for aging research as well as for clinical ooplasmic donation to rejuvenate aging oocytes.

                Author and article information

                J Reprod Dev
                J. Reprod. Dev
                The Journal of Reproduction and Development
                The Society for Reproduction and Development
                12 April 2015
                August 2015
                : 61
                : 4
                : 251-259
                [1) ]Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
                [2) ]Research Institute Genome Research Center, Tokyo University of Agriculture NODAI, Tokyo 156-8502, Japan
                Author notes
                Correspondence: H Iwata (e-mail: h1iwata@ 123456nodai.ac.jp )
                ©2015 Society for Reproduction and Development

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.

                Original Article


                Comment on this article