+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prevalence and genotypic identification of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in pre-weaned dairy calves in Guangdong, China


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi are common enteric pathogens in humans and animals. Data on the transmission of these pathogens are scarce from Guangdong, China, which has a subtropical monsoon climate and is the epicenter for many emerging infectious diseases. This study was conducted to better understand the prevalence and identity of the three pathogens in pre-weaned dairy calves in Guangdong.


          The occurrence and genetic identity of three pathogens were analyzed by polymerase chain reaction. PCR-positive products were sequenced to determine the species and genotypes. A Chi-square test was used to compare the prevalence of pathogens among sampling dates, age groups, or clinical signs.


          The detection rates of Cryptosporidium spp., G. duodenalis and E. bieneusi were 24.0% (93/388), 74.2% (288/388) and 15.7% (61/388), respectively. Three Cryptosporidium species were detected, including C. bovis ( n = 73), C. parvum ( n = 12) and C. ryanae ( n = 7); one animal had concurrence of C. bovis and C. parvum. C. parvum was the dominant species during the first two weeks of life, whereas C. bovis and C. ryanae were mostly seen at 3–9 weeks of age. Sequence analysis identified the C. parvum as subtype IIdA19G1. Assemblage E ( n = 282), assemblage A ( n = 1), and concurrence of A and E ( n = 5) were identified among G. duodenalis-positive animals using multilocus genotyping (MLG). Altogether, 15, 10 and 17 subtypes of assemblage E were observed at the bg, gdh and tpi loci, respectively, forming 49 assemblage E MLGs. The highest detection rate of G. duodenalis was found in winter. Sequence analysis identified genotypes J ( n = 57), D ( n = 3) and one concurrence of J and D among E. bieneusi-positive animals. The detection rate of E. bieneusi was significantly higher in spring (38.0%; 41/108) than in summer (7.2%; 8/111) and winter (7.1%; 12/169).


          These results indicate a common occurrence of C. parvum subtype IIdA19G1, G. duodenalis assemblage E, and E. bieneusi genotype J in pre-weaned dairy calves in Guangdong. More studies are needed to understand the unique genetic characteristics and zoonotic potential of the three enteric pathogens in the province.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Zoonotic potential and molecular epidemiology of Giardia species and giardiasis.

          Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination.
            • Record: found
            • Abstract: found
            • Article: not found

            Cryptosporidium species in humans and animals: current understanding and research needs.

            Cryptosporidium is increasingly recognized as one of the major causes of moderate to severe diarrhoea in developing countries. With treatment options limited, control relies on knowledge of the biology and transmission of the members of the genus responsible for disease. Currently, 26 species are recognized as valid on the basis of morphological, biological and molecular data. Of the nearly 20 Cryptosporidium species and genotypes that have been reported in humans, Cryptosporidium hominis and Cryptosporidium parvum are responsible for the majority of infections. Livestock, particularly cattle, are one of the most important reservoirs of zoonotic infections. Domesticated and wild animals can each be infected with several Cryptosporidium species or genotypes that have only a narrow host range and therefore have no major public health significance. Recent advances in next-generation sequencing techniques will significantly improve our understanding of the taxonomy and transmission of Cryptosporidium species, and the investigation of outbreaks and monitoring of emerging and virulent subtypes. Important research gaps remain including a lack of subtyping tools for many Cryptosporidium species of public and veterinary health importance, and poor understanding of the genetic determinants of host specificity of Cryptosporidium species and impact of climate change on the transmission of Cryptosporidium.
              • Record: found
              • Abstract: found
              • Article: not found

              Unique endemicity of cryptosporidiosis in children in Kuwait.

              To understand the transmission of Cryptosporidium infection in children, fecal specimens from 62 Kuwaiti children with gastrointestinal symptoms found to be positive by microscopy were genotyped and subtyped with a small subunit rRNA-based PCR-restriction fragment length polymorphism analysis and a 60-kDa glycoprotein-based DNA sequencing tool. The median age of infected children was 4.5 years, and 77% of infections occurred during the cool season of November to April. Fifty-eight of the children (94%) had Cryptosporidium parvum, three (5%) had Cryptosporidium hominis, and one (1%) had both C. parvum and C. hominis. Altogether, 13 subtypes of C. parvum (belonging to four subtype allele families) and C. hominis (belonging to three subtype allele families) were observed, with 92% of specimens belonging to the common allele family IIa and the unusual allele family IId. Thus, the transmission of cryptosporidiosis in Kuwaiti children differed significantly from other tropical countries.

                Author and article information

                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                17 January 2019
                17 January 2019
                : 12
                : 41
                [1 ]ISNI 0000 0001 2163 4895, GRID grid.28056.39, State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, , East China University of Science and Technology, ; Shanghai, 200237 China
                [2 ]ISNI 0000 0000 9546 5767, GRID grid.20561.30, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, , South China Agricultural University, ; Guangzhou, 510642 China
                [3 ]Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                : 5 October 2018
                : 10 January 2019
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 31820103014
                Award ID: 31630078
                Award Recipient :
                Custom metadata
                © The Author(s) 2019

                cryptosporidium,giardia duodenalis,enterocytozoon bieneusi,molecular epidemiology
                cryptosporidium, giardia duodenalis, enterocytozoon bieneusi, molecular epidemiology


                Comment on this article