148
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Integration of Light and Temperature in the Regulation of Circadian Gene Expression in Drosophila

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Circadian clocks are aligned to the environment via synchronizing signals, or Zeitgebers, such as daily light and temperature cycles, food availability, and social behavior. In this study, we found that genome-wide expression profiles from temperature-entrained flies show a dramatic difference in the presence or absence of a thermocycle. Whereas transcript levels appear to be modified broadly by changes in temperature, there is a specific set of temperature-entrained circadian mRNA profiles that continue to oscillate in constant conditions. There are marked differences in the biological functions represented by temperature-driven or circadian regulation. The set of temperature-entrained circadian transcripts overlaps significantly with a previously defined set of transcripts oscillating in response to a photocycle. In follow-up studies, all thermocycle-entrained circadian transcript rhythms also responded to light/dark entrainment, whereas some photocycle-entrained rhythms did not respond to temperature entrainment. Transcripts encoding the clock components Period, Timeless, Clock, Vrille, PAR-domain protein 1, and Cryptochrome were all confirmed to be rhythmic after entrainment to a daily thermocycle, although the presence of a thermocycle resulted in an unexpected phase difference between period and timeless expression rhythms at the transcript but not the protein level. Generally, transcripts that exhibit circadian rhythms both in response to thermocycles and photocycles maintained the same mutual phase relationships after entrainment by temperature or light. Comparison of the collective temperature- and light-entrained circadian phases of these transcripts indicates that natural environmental light and temperature cycles cooperatively entrain the circadian clock. This interpretation is further supported by comparative analysis of the circadian phases observed for temperature-entrained and light-entrained circadian locomotor behavior. Taken together, these findings suggest that information from both light and temperature is integrated by the transcriptional clock mechanism in the adult fly head.

          Author Summary

          A key adaptation to life on Earth is provided by internal daily time-keeping mechanisms that allow anticipation of the alternations between night and day. To act as reliable time-keeping mechanisms, circadian clocks have to be able to synchronize to environmental time cues, maintain ∼24-h rhythms under constant conditions, run at approximately the same pace over a range of environmental temperatures, and efficiently communicate time-of-day information to other biological systems. Clock-controlled oscillations in gene expression play an essential role in producing overt circadian rhythms. For most organisms, light/dark cycles appear to constitute the most powerful entrainment cue, but daily temperature cycles have also been demonstrated to efficiently synchronize circadian rhythms. This study uses the fruit fly Drosophila melanogaster as a model to compare the clock-dependent and clock-independent daily gene expression rhythms produced in response to light/dark cycles versus temperature cycles. A broad temperature-driven expression program was found in the heads of both wild-type and arrhythmic mutant flies, but wild-type flies also exhibited a more specific temperature-entrained circadian expression response that resembled the circadian response following light entrainment. The phase relationship between the temperature- and light-entrained circadian rhythms suggests that in nature light and temperature act cooperatively to synchronize the circadian clock.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila.

          The mechanisms by which circadian pacemaker systems transmit timing information to control behavior are largely unknown. Here, we define two critical features of that mechanism in Drosophila. We first describe animals mutant for the pdf neuropeptide gene, which is expressed by most of the candidate pacemakers (LNv neurons). Next, we describe animals in which pdf neurons were selectively ablated. Both sets of animals produced similar behavioral phenotypes. Both sets entrained to light, but both were largely arrhythmic under constant conditions. A minority of each pdf variant exhibited weak to moderate free-running rhythmicity. These results confirm the assignment of LNv neurons as the principal circadian pacemakers controlling daily locomotion in Drosophila. They also implicate PDF as the principal circadian transmitter.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coupled oscillators control morning and evening locomotor behaviour of Drosophila.

            Daily rhythms of physiology and behaviour are precisely timed by an endogenous circadian clock. These include separate bouts of morning and evening activity, characteristic of Drosophila melanogaster and many other taxa, including mammals. Whereas multiple oscillators have long been proposed to orchestrate such complex behavioural programmes, their nature and interplay have remained elusive. By using cell-specific ablation, we show that the timing of morning and evening activity in Drosophila derives from two distinct groups of circadian neurons: morning activity from the ventral lateral neurons that express the neuropeptide PDF, and evening activity from another group of cells, including the dorsal lateral neurons. Although the two oscillators can function autonomously, cell-specific rescue experiments with circadian clock mutants indicate that they are functionally coupled.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain.

              In Drosophila, a 'clock' situated in the brain controls circadian rhythms of locomotor activity. This clock relies on several groups of neurons that express the Period (PER) protein, including the ventral lateral neurons (LN(v)s), which express the Pigment-dispersing factor (PDF) neuropeptide, and the PDF-negative dorsal lateral neurons (LN(d)s). In normal cycles of day and night, adult flies exhibit morning and evening peaks of activity; however, the contribution of the different clock neurons to the rest-activity pattern remains unknown. Here, we have used targeted expression of PER to restore the clock function of specific subsets of lateral neurons in arrhythmic per(0) mutant flies. We show that PER expression restricted to the LN(v)s only restores the morning activity, whereas expression of PER in both the LN(v)s and LN(d)s also restores the evening activity. This provides the first neuronal bases for 'morning' and 'evening' oscillators in the Drosophila brain. Furthermore, we show that the LN(v)s alone can generate 24 h activity rhythms in constant darkness, indicating that the morning oscillator is sufficient to drive the circadian system.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                pgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                April 2007
                6 April 2007
                : 3
                : 4
                : e54
                Affiliations
                [1 ] Laboratory of Genetics, The Rockefeller University, New York, New York, United States of America
                [2 ] Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
                [3 ] Laboratory of Mathematical Physics, The Rockefeller University, New York, New York, United States of America
                [4 ] School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
                North Carolina State University, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: young@ 123456mail.rockefeller.edu
                Article
                06-PLGE-RA-0557R2 plge-03-04-07
                10.1371/journal.pgen.0030054
                1847695
                17411344
                c2b5f306-208a-4223-a967-fea029367229
                Copyright: © 2007 Boothroyd et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 December 2006
                : 22 February 2007
                Page count
                Pages: 16
                Categories
                Research Article
                Biochemistry
                Cell Biology
                Genetics and Genomics
                Neuroscience
                Drosophila
                None
                Custom metadata
                Boothroyd CE, Wijnen H, Naef F, Saez L, Young MW (2007) Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet 3(4): e54.doi: 10.1371/journal.pgen.0030054

                Genetics
                Genetics

                Comments

                Comment on this article