31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human β-Cell Proliferation and Intracellular Signaling : Driving in the Dark Without a Road Map

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A major goal in diabetes research is to find ways to enhance the mass and function of insulin secreting β-cells in the endocrine pancreas to prevent and/or delay the onset or even reverse overt diabetes. In this Perspectives in Diabetes article, we highlight the contrast between the relatively large body of information that is available in regard to signaling pathways, proteins, and mechanisms that together provide a road map for efforts to regenerate β-cells in rodents versus the scant information in human β-cells. To reverse the state of ignorance regarding human β-cell signaling, we suggest a series of questions for consideration by the scientific community to construct a human β-cell proliferation road map. The hope is that the knowledge from the new studies will allow the community to move faster towards developing therapeutic approaches to enhance human β-cell mass in the long-term goal of preventing and/or curing type 1 and type 2 diabetes.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes.

          Dysfunction of the pancreatic beta cell is an important defect in the pathogenesis of type 2 diabetes, although its exact relationship to the insulin resistance is unclear. To determine whether insulin signaling has a functional role in the beta cell we have used the Cre-loxP system to specifically inactivate the insulin receptor gene in the beta cells. The resultant mice exhibit a selective loss of insulin secretion in response to glucose and a progressive impairment of glucose tolerance. These data indicate an important functional role for the insulin receptor in glucose sensing by the pancreatic beta cell and suggest that defects in insulin signaling at the level of the beta cell may contribute to the observed alterations in insulin secretion in type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans.

            Little is known about the capacity, mechanisms, or timing of growth in beta-cell mass in humans. We sought to establish if the predominant expansion of beta-cell mass in humans occurs in early childhood and if, as in rodents, this coincides with relatively abundant beta-cell replication. We also sought to establish if there is a secondary growth in beta-cell mass coincident with the accelerated somatic growth in adolescence. To address these questions, pancreas volume was determined from abdominal computer tomographies in 135 children aged 4 weeks to 20 years, and morphometric analyses were performed in human pancreatic tissue obtained at autopsy from 46 children aged 2 weeks to 21 years. We report that 1) beta-cell mass expands by severalfold from birth to adulthood, 2) islets grow in size rather than in number during this transition, 3) the relative rate of beta-cell growth is highest in infancy and gradually declines thereafter to adulthood with no secondary accelerated growth phase during adolescence, 4) beta-cell mass (and presumably growth) is highly variable between individuals, and 5) a high rate of beta-cell replication is coincident with the major postnatal expansion of beta-cell mass. These data imply that regulation of beta-cell replication during infancy plays a major role in beta-cell mass in adult humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase.

              The Forkhead box m1 (Foxm1) gene is critical for G(1)/S transition and essential for mitotic progression. However, the transcriptional mechanisms downstream of FoxM1 that control these cell cycle events remain to be determined. Here, we show that both early-passage Foxm1(-)(/)(-) mouse embryonic fibroblasts (MEFs) and human osteosarcoma U2OS cells depleted of FoxM1 protein by small interfering RNA fail to grow in culture due to a mitotic block and accumulate nuclear levels of cyclin-dependent kinase inhibitor (CDKI) proteins p21(Cip1) and p27(Kip1). Using quantitative chromatin immunoprecipitation and expression assays, we show that FoxM1 is essential for transcription of the mitotic regulatory genes Cdc25B, Aurora B kinase, survivin, centromere protein A (CENPA), and CENPB. We also identify the mechanism by which FoxM1 deficiency causes elevated nuclear levels of the CDKI proteins p21(Cip1) and p27(Kip1). We provide evidence that FoxM1 is essential for transcription of Skp2 and Cks1, which are specificity subunits of the Skp1-Cullin 1-F-box (SCF) ubiquitin ligase complex that targets these CDKI proteins for degradation during the G(1)/S transition. Moreover, early-passage Foxm1(-)(/)(-) MEFs display premature senescence as evidenced by high expression of the senescence-associated beta-galactosidase, p19(ARF), and p16(INK4A) proteins. Taken together, these results demonstrate that FoxM1 regulates transcription of cell cycle genes critical for progression into S-phase and mitosis.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                September 2012
                17 August 2012
                : 61
                : 9
                : 2205-2213
                Affiliations
                [1] 1Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
                [2] 2Department of Medicine, Harvard Medical School, Boston, Massachusetts
                [3] 3Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan
                [4] 4Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
                Author notes
                Corresponding authors: Rohit N. Kulkarni, rohit.kulkarni@ 123456joslin.harvard.edu , and Andrew F. Stewart, stewarta@ 123456pitt.edu .
                Article
                0018
                10.2337/db12-0018
                3425429
                22751699
                c2ba9e33-65a6-483f-802f-15f71a1480b2
                © 2012 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 16 January 2012
                : 25 April 2012
                Categories
                Perspectives in Diabetes

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article