25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial peptides (AMPs) are important components of the innate immune system that have been found to be effective against disease causing pathogens. Identification of AMPs through wet-lab experiment is expensive. Therefore, development of efficient computational tool is essential to identify the best candidate AMP prior to the in vitro experimentation. In this study, we made an attempt to develop a support vector machine (SVM) based computational approach for prediction of AMPs with improved accuracy. Initially, compositional, physico-chemical and structural features of the peptides were generated that were subsequently used as input in SVM for prediction of AMPs. The proposed approach achieved higher accuracy than several existing approaches, while compared using benchmark dataset. Based on the proposed approach, an online prediction server iAMPpred has also been developed to help the scientific community in predicting AMPs, which is freely accessible at http://cabgrid.res.in:8080/amppred/. The proposed approach is believed to supplement the tools and techniques that have been developed in the past for prediction of AMPs.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          Statitical Learning Theory

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types.

            Antimicrobial peptides (AMPs), also called host defense peptides, are an evolutionarily conserved component of the innate immune response and are found among all classes of life. According to their special functions, AMPs are generally classified into ten categories: Antibacterial Peptides, Anticancer/tumor Peptides, Antifungal Peptides, Anti-HIV Peptides, Antiviral Peptides, Antiparasital Peptides, Anti-protist Peptides, AMPs with Chemotactic Activity, Insecticidal Peptides, and Spermicidal Peptides. Given a query peptide, how can we identify whether it is an AMP or non-AMP? If it is, can we identify which functional type or types it belong to? Particularly, how can we deal with the multi-type problem since an AMP may belong to two or more functional types? To address these problems, which are obviously very important to both basic research and drug development, a multi-label classifier was developed based on the pseudo amino acid composition (PseAAC) and fuzzy K-nearest neighbor (FKNN) algorithm, where the components of PseAAC were featured by incorporating five physicochemical properties. The novel classifier is called iAMP-2L, where "2L" means that it is a 2-level predictor. The 1st-level is to answer the 1st question above, while the 2nd-level is to answer the 2nd and 3rd questions that are beyond the reach of any existing methods in this area. For the conveniences of users, a user-friendly web-server for iAMP-2L was established at http://www.jci-bioinfo.cn/iAMP-2L. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition

              The σ54 promoters are unique in prokaryotic genome and responsible for transcripting carbon and nitrogen-related genes. With the avalanche of genome sequences generated in the postgenomic age, it is highly desired to develop automated methods for rapidly and effectively identifying the σ54 promoters. Here, a predictor called ‘iPro54-PseKNC’ was developed. In the predictor, the samples of DNA sequences were formulated by a novel feature vector called ‘pseudo k-tuple nucleotide composition’, which was further optimized by the incremental feature selection procedure. The performance of iPro54-PseKNC was examined by the rigorous jackknife cross-validation tests on a stringent benchmark data set. As a user-friendly web-server, iPro54-PseKNC is freely accessible at http://lin.uestc.edu.cn/server/iPro54-PseKNC. For the convenience of the vast majority of experimental scientists, a step-by-step protocol guide was provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics that were presented in this paper just for its integrity. Meanwhile, we also discovered through an in-depth statistical analysis that the distribution of distances between the transcription start sites and the translation initiation sites were governed by the gamma distribution, which may provide a fundamental physical principle for studying the σ54 promoters.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                13 February 2017
                2017
                : 7
                : 42362
                Affiliations
                [1 ]Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute , New Delhi-110012, India
                [2 ]Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute , New Delhi-110012, India
                [3 ]Department of Bioinformatics, Janta Vedic College, Baraut , Baghpat-250611, Uttar Pradesh, India
                Author notes
                Article
                srep42362
                10.1038/srep42362
                5304217
                28205576
                c2bf0eb2-c0d1-4172-bcf0-090fbabb3185
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 24 October 2016
                : 09 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article