+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Species distribution and susceptibility profile of Candida species in a Brazilian public tertiary hospital

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Species identification and antifungal susceptibility tests were carried out on 212 Candida isolates obtained from bloodstream infections, urinary tract infections and dialysis-associated peritonitis, from cases attended at a Brazilian public tertiary hospital from January 1998 to January 2005.


          Candida albicans represented 33% of the isolates, Candida parapsilosis 31.1%, Candida tropicalis 17.9%, Candida glabrata 11.8%, and others species 6.2%. In blood culture, C. parapsilosis was the most frequently encountered species (48%). The resistance levels to the antifungal azoles were relatively low for the several species, except for C. tropicalis and C. glabrata. Amphotericin B resistance was observed in 1 isolate of C. parapsilosis.


          The species distribution and antifungal susceptibility herein observed presented several epidemiological features common to other tertiary hospitals in Latin American countries. It also exhibited some peculiarity, such as a very high frequency of C. parapsilosis both in bloodstream infections and dialysis-associated peritonitis. C. albicans also occurred in an important number of case infections, in all evaluated clinical sources. C. glabrata presented a high proportion of resistant isolates. The data emphasize the necessity to carry out the correct species identification accompanied by the susceptibility tests in all tertiary hospitals.

          Related collections

          Most cited references 23

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical, cellular, and molecular factors that contribute to antifungal drug resistance.

          In the past decade, the frequency of diagnosed fungal infections has risen sharply due to several factors, including the increase in the number of immunosuppressed patients resulting from the AIDS epidemic and treatments during and after organ and bone marrow transplants. Linked with the increase in fungal infections is a recent increase in the frequency with which these infections are recalcitrant to standard antifungal therapy. This review summarizes the factors that contribute to antifungal drug resistance on three levels: (i) clinical factors that result in the inability to successfully treat refractory disease; (ii) cellular factors associated with a resistant fungal strain; and (iii) molecular factors that are ultimately responsible for the resistance phenotype in the cell. Many of the clinical factors that contribute to resistance are associated with the immune status of the patient, with the pharmacology of the drugs, or with the degree or type of fungal infection present. At a cellular level, antifungal drug resistance can be the result of replacement of a susceptible strain with a more resistant strain or species or the alteration of an endogenous strain (by mutation or gene expression) to a resistant phenotype. The molecular mechanisms of resistance that have been identified to date in Candida albicans include overexpression of two types of efflux pumps, overexpression or mutation of the target enzyme, and alteration of other enzymes in the same biosynthetic pathway as the target enzyme. Since the study of antifungal drug resistance is relatively new, other factors that may also contribute to resistance are discussed.
            • Record: found
            • Abstract: found
            • Article: not found

            In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance.

            The echinocandins are being used increasingly as therapy for invasive candidiasis. Prospective sentinel surveillance for the emergence of in vitro resistance to the echinocandins among invasive Candida sp. isolates is indicated. We determined the in vitro activities of anidulafungin, caspofungin, and micafungin against 5,346 invasive (bloodstream or sterile-site) isolates of Candida spp. collected from over 90 medical centers worldwide from 1 January 2001 to 31 December 2006. We performed susceptibility testing according to the CLSI M27-A2 method and used RPMI 1640 broth, 24-h incubation, and a prominent inhibition endpoint for determination of the MICs. Of 5,346 invasive Candida sp. isolates, species distribution was 54% C. albicans, 14% C. parapsilosis, 14% C. glabrata, 12% C. tropicalis, 3% C. krusei, 1% C. guilliermondii, and 2% other Candida spp. Overall, all three echinocandins were very active against Candida: anidulafungin (MIC50, 0.06 microg/ml; MIC90, 2 microg/ml), caspofungin (MIC50, 0.03 microg/ml; MIC90, 0.25 microg/ml), micafungin (MIC50, 0.015 microg/ml; MIC90, 1 microg/ml). More than 99% of isolates were inhibited by < or = 2 microg/ml of all three agents. Results by species (expressed as the percentages of isolates inhibited by < or = 2 microg/ml of anidulafungin, caspofungin, and micafungin, respectively) were as follows: for C. albicans, 99.6%, 100%, and 100%; for C. parapsilosis, 92.5%, 99.9%, and 100%; for C. glabrata, 99.9%, 99.9%, and 100%; for C. tropicalis, 100%, 99.8%, and 100%; for C. krusei, 100%, 100%, and 100%; and for C. guilliermondii, 90.2%, 95.1%, and 100%. There was no significant change in the activities of the three echinocandins over the 6-year study period and no difference in activity by geographic region. All three echinocandins have excellent in vitro activities against invasive strains of Candida isolated from centers worldwide. Our prospective sentinel surveillance reveals no evidence of emerging echinocandin resistance among invasive clinical isolates of Candida spp.
              • Record: found
              • Abstract: found
              • Article: not found

              Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing.

              Fluconazole in vitro susceptibility test results for 205,329 yeasts were collected from 134 study sites in 40 countries from June 1997 through December 2005. Data were collected for 147,776 yeast isolates tested with voriconazole from 2001 through 2005. All investigators tested clinical yeast isolates by the CLSI M44-A disk diffusion method. Test plates were automatically read and results recorded with a BIOMIC image analysis system. Species, drug, zone diameter, susceptibility category, and quality control results were collected quarterly. Duplicate (same patient, same species, and same susceptible-resistant biotype profile during any 7-day period) and uncontrolled test results were not analyzed. Overall, 90.1% of all Candida isolates tested were susceptible (S) to fluconazole; however, 10 of the 22 species identified exhibited decreased susceptibility (<75% S) on the order of that seen with the resistant (R) species C. glabrata and C. krusei. Among 137,487 isolates of Candida spp. tested against voriconazole, 94.8% were S and 3.1% were R. Less than 30% of fluconazole-resistant isolates of C. albicans, C. glabrata, C. tropicalis, and C. rugosa remained S to voriconazole. The non-Candida yeasts (8,821 isolates) were generally less susceptible to fluconazole than Candida spp. but, aside from Rhodotorula spp., remained susceptible to voriconazole. This survey demonstrates the broad spectrum of these azoles against the most common opportunistic yeast pathogens but identifies several less common yeast species with decreased susceptibility to antifungal agents. These organisms may pose a future threat to optimal antifungal therapy and emphasize the importance of prompt and accurate species identification.

                Author and article information

                BMC Res Notes
                BMC Research Notes
                BioMed Central
                3 January 2010
                : 3
                : 1
                [1 ]Botucatu Biosciences Institute, Sao Paulo State University, Botucatu, Brazil
                [2 ]Medical School, Sao Paulo State University, Botucatu, Brazil
                Copyright ©2010 Bagagli et al; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Short Report



                Comment on this article