Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Effects of Direct Current Electric Fields on Cell Migration and Actin Filament Distribution in Bovine Vascular Endothelial Cells

      ,

      Journal of Vascular Research

      S. Karger AG

      Galvanotaxis, Lamellipodium, Polarity, Actin, Cell motility, Cytoskeleton, Electric field, Endothelium

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electric fields exceeding 1 V/cm occur during wound healing, morphogenesis, and tumor growth, and such fields have been shown to induce directional migration of a variety of different cells. However, the mechanism by which electric fields direct cell movement is not yet understood, and the effects on vascular endothelial cells are entirely unknown. We demonstrate that cultured bovine aortic endothelial cells migrate toward the cathode of an applied electric field. Time-lapse microscopic imaging shows that the field suppresses protrusive activity from anode-facing surfaces of the cells while stimulating protrusions from surfaces that face the cathode. The threshold for this response is 1–2 V/cm, similar to field strengths measured in vivo. In addition, fluorescence microscopy shows that lamellipodia projecting toward the cathode are rich in actin filaments. Using quantitative image analysis, we show that the electric field induces a transient 80% increase in the amount of filamentous actin in the cell. Comparison of the distribution of F-actin with total protein distribution indicates that F-actin is asymmetrically distributed in the cytoplasm, being selectively enriched toward the cathode. We propose that physiological electric fields direct cell migration by eliciting an intracellular signal that creates new sites for actin assembly in the cathodal cytoplasm.

          Related collections

          Author and article information

          Journal
          JVR
          J Vasc Res
          10.1159/issn.1018-1172
          Journal of Vascular Research
          S. Karger AG
          1018-1172
          1423-0135
          2002
          October 2002
          18 September 2002
          : 39
          : 5
          : 391-404
          Affiliations
          Department of Pathology and Anatomical Sciences, University of Buffalo School of Medicine and Biomedical Sciences, Buffalo, N.Y., USA
          Article
          64517 J Vasc Res 2002;39:391–404
          10.1159/000064517
          12297702
          © 2002 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          Page count
          Figures: 10, References: 42, Pages: 14
          Categories
          Internet Discussion Forum

          Comments

          Comment on this article