25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lifestyle and Dietary Factors Associated with the Evolution of Cardiometabolic Risk over Four Years in West-African Adults: The Benin Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim. To assess in adults from Benin changes in cardiometabolic risk (CMR) using both the Framingham risk score (FRS) and metabolic syndrome (MetS) and to examine the effects of diet, and lifestyles, controlling for location and socioeconomic status. Methods. Apparently healthy subjects ( n = 541) aged 25–60 years and randomly selected in the largest city, a small town, and rural areas were included in the four-year longitudinal study. Along with CMR factors, socioeconomic, diet and lifestyle data were collected in individual interviews. A food score based on consumption frequency of four “sentinel” food groups (meat and poultry, dairy, eggs, and vegetables) was developed. Lifestyle included physical activity, alcohol and tobacco use. Education and income (proxy) were the socioeconomic variables. Results. Among the subjects with four-year follow-up data ( n = 416), 13.5% were at risk at baseline, showing MetS or FRS ≥ 10%. The incidence of MetS and FRS ≥ 10% during follow-up was 8.2% and 5%, respectively. CMR deteriorated in 21% of subjects. Diet and lifestyle mediated location and income effects on CMR evolution. Low food scores and inactivity increased the likelihood of CMR deterioration. Conclusion. Combining MetS and FRS might be appropriate for surveillance purposes in order to better capture CMR and inform preventive measures.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          General cardiovascular risk profile for use in primary care: the Framingham Heart Study.

          Separate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary heart disease, cerebrovascular disease, peripheral vascular disease, and heart failure. The present report presents a single multivariable risk function that predicts risk of developing all CVD and of its constituents. We used Cox proportional-hazards regression to evaluate the risk of developing a first CVD event in 8491 Framingham study participants (mean age, 49 years; 4522 women) who attended a routine examination between 30 and 74 years of age and were free of CVD. Sex-specific multivariable risk functions ("general CVD" algorithms) were derived that incorporated age, total and high-density lipoprotein cholesterol, systolic blood pressure, treatment for hypertension, smoking, and diabetes status. We assessed the performance of the general CVD algorithms for predicting individual CVD events (coronary heart disease, stroke, peripheral artery disease, or heart failure). Over 12 years of follow-up, 1174 participants (456 women) developed a first CVD event. All traditional risk factors evaluated predicted CVD risk (multivariable-adjusted P<0.0001). The general CVD algorithm demonstrated good discrimination (C statistic, 0.763 [men] and 0.793 [women]) and calibration. Simple adjustments to the general CVD risk algorithms allowed estimation of the risks of each CVD component. Two simple risk scores are presented, 1 based on all traditional risk factors and the other based on non-laboratory-based predictors. A sex-specific multivariable risk factor algorithm can be conveniently used to assess general CVD risk and risk of individual CVD events (coronary, cerebrovascular, and peripheral arterial disease and heart failure). The estimated absolute CVD event rates can be used to quantify risk and to guide preventive care.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation.

            The Framingham Heart Study produced sex-specific coronary heart disease (CHD) prediction functions for assessing risk of developing incident CHD in a white middle-class population. Concern exists regarding whether these functions can be generalized to other populations. To test the validity and transportability of the Framingham CHD prediction functions per a National Heart, Lung, and Blood Institute workshop organized for this purpose. Sex-specific CHD functions were derived from Framingham data for prediction of coronary death and myocardial infarction. These functions were applied to 6 prospectively studied, ethnically diverse cohorts (n = 23 424), including whites, blacks, Native Americans, Japanese American men, and Hispanic men: the Atherosclerosis Risk in Communities Study (1987-1988), Physicians' Health Study (1982), Honolulu Heart Program (1980-1982), Puerto Rico Heart Health Program (1965-1968), Strong Heart Study (1989-1991), and Cardiovascular Health Study (1989-1990). The performance, or ability to accurately predict CHD risk, of the Framingham functions compared with the performance of risk functions developed specifically from the individual cohorts' data. Comparisons included evaluation of the equality of relative risks for standard CHD risk factors, discrimination, and calibration. For white men and women and for black men and women the Framingham functions performed reasonably well for prediction of CHD events within 5 years of follow-up. Among Japanese American and Hispanic men and Native American women, the Framingham functions systematically overestimated the risk of 5-year CHD events. After recalibration, taking into account different prevalences of risk factors and underlying rates of developing CHD, the Framingham functions worked well in these populations. The sex-specific Framingham CHD prediction functions perform well among whites and blacks in different settings and can be applied to other ethnic groups after recalibration for differing prevalences of risk factors and underlying rates of CHD events.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lipoprotein ratios: Physiological significance and clinical usefulness in cardiovascular prevention

              Low-density lipoprotein (LDL) cholesterol concentration has been the prime index of cardiovascular disease risk and the main target for therapy. However, several lipoprotein ratios or “atherogenic indices” have been defined in an attempt to optimize the predictive capacity of the lipid profile. In this review, we summarize their pathophysiological aspects, and highlight the rationale for using these lipoprotein ratios as cardiovascular risk factors in clinical practice, specifying their cut-off risk levels and a target for lipid-lowering therapy. Total/high-density lipoprotein (HDL) cholesterol and LDL/HDL cholesterol ratios are risk indicators with greater predictive value than isolated parameters used independently, particularly LDL. Future recommendations regarding the diagnosis and treatment of dyslipidemia, including instruments for calculating cardiovascular risk or action guidelines, should include the lipoprotein ratios with greater predictive power which, in view of the evidence-based results, are none other than those which include HDL cholesterol.
                Bookmark

                Author and article information

                Journal
                J Obes
                J Obes
                JOBES
                Journal of Obesity
                Hindawi Publishing Corporation
                2090-0708
                2090-0716
                2013
                12 March 2013
                : 2013
                : 298024
                Affiliations
                1TRANSNUT, WHO Collaborating Centre on Nutrition Changes and Development, Department of Nutrition, Faculty of Medicine, University of Montreal, CP 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7
                2Department of Health Promotion, Regional Institute for Public Health, University of Abomey-Calavi, 01 BP 918 Cotonou, Benin
                3United Nations International Children's Emergency Fund, BP 1146 N'Djamena, Chad
                4Bioversity International, West and Central Africa, c/o IITA, 08 BP 0932 Cotonou, Benin
                5Department of Health and Environment, Regional Institute for Public Health, University of Abomey-Calavi, 01 BP 918 Cotonou, Benin
                Author notes

                Academic Editor: Renato Pasquali

                Author information
                https://orcid.org/0000-0001-5886-2875
                Article
                10.1155/2013/298024
                3608277
                23555051
                c2e44e61-a6cc-458f-b3d2-fed83618630d
                Copyright © 2013 Charles Sossa et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 December 2012
                : 6 February 2013
                Categories
                Research Article

                Nutrition & Dietetics
                Nutrition & Dietetics

                Comments

                Comment on this article