8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hysteresis-Suppressed High-Efficiency Flexible Perovskite Solar Cells Using Solid-State Ionic-Liquids for Effective Electron Transport

      , , , , , ,
      Advanced Materials
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An efficiency of flexible perovskite solar cells (Pvs-SCs) of 16.09% is achieved, the highest value reported for flexible Pvs-SCs to date. The outstanding performance is attributed to the superior features of alternative electron-transport materials, such as antireflection, a suitable work function, high electron mobility, and a reduced trap-state density of the perovskite material.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers.

          The recent dramatic rise in power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) has triggered intense research worldwide. However, high PCE values have often been reached with poor stability at an illuminated area of typically less than 0.1 square centimeter. We used heavily doped inorganic charge extraction layers in planar PSCs to achieve very rapid carrier extraction, even with 10- to 20-nanometer-thick layers, avoiding pinholes and eliminating local structural defects over large areas. The robust inorganic nature of the layers allowed for the fabrication of PSCs with an aperture area >1 square centimeter that have a PCE >15%, as certified by an accredited photovoltaic calibration laboratory. Hysteresis in the current-voltage characteristics was eliminated; the PSCs were stable, with >90% of the initial PCE remaining after 1000 hours of light soaking.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells

            Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3–7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to the level in OTP single crystals. Combining the high work function of several HTLs, a high stabilized device efficiency of 18.3% in low-temperature-processed planar-heterojunction OTP devices under 1 sun illumination is achieved. This simple method in enhancing OTP morphology paves the way for its application in other optoelectronic devices for enhanced performance.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Hysteresis-less inverted CH3NH3PbI3planar perovskite hybrid solar cells with 18.1% power conversion efficiency

                Bookmark

                Author and article information

                Journal
                Advanced Materials
                Adv. Mater.
                Wiley-Blackwell
                09359648
                July 2016
                July 2016
                : 28
                : 26
                : 5206-5213
                Article
                10.1002/adma.201600446
                27147394
                c2eb6240-1c46-44ef-8e2b-a6d28e1b9b97
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article