35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improving the management of Inherited Retinal Dystrophies by targeted sequencing of a population-specific gene panel

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Next-generation sequencing (NGS) has overcome important limitations to the molecular diagnosis of Inherited Retinal Dystrophies (IRD) such as the high clinical and genetic heterogeneity and the overlapping phenotypes. The purpose of this study was the identification of the genetic defect in 32 Spanish families with different forms of IRD. With that aim, we implemented a custom NGS panel comprising 64 IRD-associated genes in our population, and three disease-associated intronic regions. A total of 37 pathogenic mutations (14 novels) were found in 73% of IRD patients ranging from 50% for autosomal dominant cases, 75% for syndromic cases, 83% for autosomal recessive cases, and 100% for X-linked cases. Additionally, unexpected phenotype-genotype correlations were found in 6 probands, which led to the refinement of their clinical diagnoses. Furthermore, intra- and interfamilial phenotypic variability was observed in two cases. Moreover, two cases unsuccessfully analysed by exome sequencing were resolved by applying this panel. Our results demonstrate that this hypothesis-free approach based on frequently mutated, population-specific loci is highly cost-efficient for the routine diagnosis of this heterogeneous condition and allows the unbiased analysis of a miscellaneous cohort. The molecular information found here has aid clinical diagnosis and has improved genetic counselling and patient management.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The molecular basis of human retinal and vitreoretinal diseases.

          During the last two to three decades, a large body of work has revealed the molecular basis of many human disorders, including retinal and vitreoretinal degenerations and dysfunctions. Although belonging to the group of orphan diseases, they affect probably more than two million people worldwide. Most excitingly, treatment of a particular form of congenital retinal degeneration is now possible. A major advantage for treatment is the unique structure and accessibility of the eye and its different components, including the vitreous and retina. Knowledge of the many different eye diseases affecting retinal structure and function (night and colour blindness, retinitis pigmentosa, cone and cone rod dystrophies, photoreceptor dysfunctions, as well as vitreoretinal traits) is critical for future therapeutic development. We have attempted to present a comprehensive picture of these disorders, including biological, clinical, genetic and molecular information. The structural organization of the review leads the reader through non-syndromic and syndromic forms of (i) rod dominated diseases, (ii) cone dominated diseases, (iii) generalized retinal degenerations and (iv) vitreoretinal disorders, caused by mutations in more than 165 genes. Clinical variability and genetic heterogeneity have an important impact on genetic testing and counselling of affected families. As phenotypes do not always correlate with the respective genotypes, it is of utmost importance that clinicians, geneticists, counsellors, diagnostic laboratories and basic researchers understand the relationships between phenotypic manifestations and specific genes, as well as mutations and pathophysiologic mechanisms. We discuss future perspectives. Copyright 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Next-generation genetic testing for retinitis pigmentosa

            Molecular diagnostics for patients with retinitis pigmentosa (RP) has been hampered by extreme genetic and clinical heterogeneity, with 52 causative genes known to date. Here, we developed a comprehensive next-generation sequencing (NGS) approach for the clinical molecular diagnostics of RP. All known inherited retinal disease genes (n = 111) were captured and simultaneously analyzed using NGS in 100 RP patients without a molecular diagnosis. A systematic data analysis pipeline was developed and validated to prioritize and predict the pathogenicity of all genetic variants identified in each patient, which enabled us to reduce the number of potential pathogenic variants from approximately 1,200 to zero to nine per patient. Subsequent segregation analysis and in silico predictions of pathogenicity resulted in a molecular diagnosis in 36 RP patients, comprising 27 recessive, six dominant, and three X-linked cases. Intriguingly, De novo mutations were present in at least three out of 28 isolated cases with causative mutations. This study demonstrates the enormous potential and clinical utility of NGS in molecular diagnosis of genetically heterogeneous diseases such as RP. De novo dominant mutations appear to play a significant role in patients with isolated RP, having major implications for genetic counselling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa.

              The gene RPGR was previously identified in the RP3 region of Xp21.1 and shown to be mutated in 10-20% of patients with the progressive retinal degeneration X-linked retinitis pigmentosa (XLRP). The mutations predominantly affected a domain homologous to RCC1, a guanine nucleotide exchange factor for the small GTPase Ran, although they were present in fewer than the 70-75% of XLRP patients predicted from linkage studies. Mutations in the RP2 locus at Xp11.3 were found in a further 10-20% of XLRP patients, as predicted from linkage studies. Because the mutations in the remainder of the XLRP patients may reside in undiscovered exons of RPGR, we sequenced a 172-kb region containing the entire gene. Analysis of the sequence disclosed a new 3' terminal exon that was mutated in 60% of XLRP patients examined. This exon encodes 567 amino acids, with a repetitive domain rich in glutamic acid residues. The sequence is conserved in the mouse, bovine and Fugu rubripes genes. It is preferentially expressed in mouse and bovine retina, further supporting its importance for retinal function. Our results suggest that mutations in RPGR are the only cause of RP3 type XLRP and account for the disease in over 70% of XLRP patients and an estimated 11% of all retinitis pigmentosa patients.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                01 April 2016
                2016
                : 6
                : 23910
                Affiliations
                [1 ]Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville , Seville, Spain
                [2 ]Centre for Biomedical Network Research on Rare Diseases (CIBERER) , Spain
                [3 ]Department of Ophthalmology, University Hospital Virgen Macarena , Seville, Spain
                [4 ]Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF) , Valencia, Spain
                [5 ]Functional Genomics Node, (INB) at CIPF , Valencia, Spain
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep23910
                10.1038/srep23910
                4817143
                27032803
                c2f751cc-fa43-492b-b32d-0d1cb3fd12f1
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 29 October 2015
                : 10 March 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article