25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Update: Influenza Activity — United States and Worldwide, May 21–September 23, 2017

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During May 21–September 23, 2017,* the United States experienced low-level seasonal influenza virus activity; however, beginning in early September, CDC received reports of a small number of localized influenza outbreaks caused by influenza A(H3N2) viruses. In addition to influenza A(H3N2) viruses, influenza A(H1N1)pdm09 and influenza B viruses were detected during May–September worldwide and in the United States. Influenza B viruses predominated in the United States from late May through late June, and influenza A viruses predominated beginning in early July. The majority of the influenza viruses collected and received from the United States and other countries during that time have been characterized genetically or antigenically as being similar to the 2017 Southern Hemisphere and 2017–18 Northern Hemisphere cell-grown vaccine reference viruses; however, a smaller proportion of the circulating A(H3N2) viruses showed similarity to the egg-grown A(H3N2) vaccine reference virus which represents the A(H3N2) viruses used for the majority of vaccine production in the United States. Also, during May 21–September 23, 2017, CDC confirmed a total of 33 influenza variant virus † infections; two were influenza A(H1N2) variant (H1N2v) viruses (Ohio) and 31 were influenza A(H3N2) variant (H3N2v) viruses (Delaware [1], Maryland [13], North Dakota [1], Pennsylvania [1], and Ohio [15]). An additional 18 specimens from Maryland have tested presumptive positive for H3v and further analysis is being conducted at CDC. United States The U.S. Influenza Surveillance System § is a collaboration between CDC and federal, state, local, and territorial partners and uses eight data sources to collect influenza information, ¶ six of which operate year-round. U.S. World Health Organization (WHO) and National Respiratory and Enteric Virus Surveillance System laboratories, which include both public health and clinical laboratories throughout the United States, contribute to virologic surveillance for influenza. During May 21–September 23, 2017, clinical laboratories in the United States tested 153,397 respiratory specimens for influenza viruses, 3,785 (2.5%) of which were positive (Figure 1). Among these, 1,885 (49.8%) were positive for influenza A viruses, and 1,900 (50.2%) were positive for influenza B viruses. Public health laboratories in the United States tested 6,431 respiratory specimens collected during May 21–September 23, 2017. Among these, 1,536 were positive for influenza (Figure 2), including 842 (54.8%) that were positive for influenza A viruses, and 694 (45.2%) that were positive for influenza B viruses. Influenza B viruses were more commonly reported from late May through late June, and influenza A viruses have predominated since early July. Among the 828 (98.3%) influenza A viruses subtyped by public health laboratories, 715 (86.4%) were influenza A(H3N2) and 113 (13.6%) were influenza A(H1N1)pdm09 virus. Among the 537 (77.4%) influenza B viruses for which lineage was determined, 398 (74.1%) belonged to the B/Yamagata lineage and 139 (25.9%) belonged to the B/Victoria lineage. FIGURE 1 Number* and percentage of respiratory specimens testing positive for influenza reported by clinical laboratories, by influenza virus type and surveillance week — United States, October 2, 2016–September 23, 2017 † * 131,519 (12.3%) of 1,067,211 tested were positive during October 2, 2016–September 23, 2017. † As of September 29, 2017. The figure above is a combination line graph and bar chart showing the number and percentage of respiratory specimens testing positive for influenza reported by clinical laboratories, by influenza virus type and surveillance week in the United States during October 2, 2016–September 23, 2017. FIGURE 2 Number* of respiratory specimens testing positive for influenza reported by public health laboratories, by influenza virus type, subtype/lineage, and surveillance week — United States, October 2, 2016–September 23, 2017 † * N = 42,875. † As of September 29, 2017. The figure above is a bar chart showing the number of respiratory specimens testing positive for influenza reported by public health laboratories, by influenza virus type, subtype/lineage, and surveillance week in the United States during October 2, 2016–September 23, 2017. During May 21–September 23, the weekly percentage of outpatient visits to health care providers for influenza-like illness** from the U.S. Outpatient Influenza-Like Illness Surveillance Network remained below the national baseline †† of 2.2%, ranging from 0.7% to 1.2%. Based on data from CDC’s National Center for Health Statistics Mortality Surveillance System, the percentage of deaths attributed to pneumonia and influenza did not exceed the epidemic threshold §§ and ranged from 5.1% to 6.1%. Four influenza-associated pediatric deaths occurring during May 21–September 23 were reported; two were associated with an influenza A(H3N2) virus, one was associated with an influenza A(H1N1)pdm09 virus, and one was associated with an influenza B virus. Novel Influenza A Virus Infections Fifty-one human infections with novel influenza A viruses were reported in the United States during May 21–September 23, 2017. All of these were variant virus infections (human infections with influenza viruses that normally circulate in swine). Thirty-one have been sequenced and are H3N2v viruses reported from five states (Delaware [1], Maryland [13], North Dakota [1], Pennsylvania [1], and Ohio [15]) and two were H1N2v viruses, both from Ohio. The remaining 18 viruses have tested presumptive positive for H3v at the Maryland public health laboratory and further confirmatory testing is being performed by CDC. All 51 patients reported exposure to swine in a fair setting during the week preceding illness onset. Swine influenza A viruses were identified from respiratory specimens collected from pigs at multiple fairs. Forty-seven of the 51 patients were children aged <18 years and four patients were adults aged ≥50 years. Three of the 51 patients were hospitalized. All other patients are recovering or have fully recovered from their illness. No human-to-human transmission of these viruses has been identified. The viruses detected in Maryland, Ohio, North Dakota, and Pennsylvania all had a hemagglutinin (HA) gene derived from a seasonal human H3N2 virus that was likely introduced into swine by reverse zoonosis (i.e., humans infecting swine) in 2010. These viruses were closely related to H3N2 viruses known to circulate in the U.S. swine population, as well as to variant virus infections detected in Ohio and Michigan during 2016 ( 1 ). Further analysis of the variant viruses detected in the most recent cases from Maryland is being performed at CDC. One of the H1N2v viruses had an HA gene from the alpha sublineage of the classical swine H1 HA lineage ( 2 ). This is the second alpha sublineage H1N2v virus detected since the mid-1990s. The second H1N2v virus had an HA gene representative of the delta 2 sublineage circulating in swine. The HA and neuraminidase (NA) genes are closely related to 2016/2017 swine influenza viruses from the United States. The NA genes of both H3N2v and H1N2v viruses are related to human H3N2 viruses that likely entered the North American swine population around 2002 and have remained the predominant NA found in contemporary swine influenza viruses. Worldwide CDC serves as a WHO Collaborating Center for Surveillance, Epidemiology, and Control of Influenza, one of six WHO Collaborating Centers for Influenza in the WHO Global Influenza Surveillance and Response System (GISRS). ¶¶ CDC, along with other international public health partners, provides surveillance and virus characterization data to WHO.*** The timing of influenza activity around the world varies by region, ††† and areas with similar influenza transmission patterns are grouped by influenza transmission zones. §§§ Reports from GISRS during May 21–September 23 suggested that typical seasonal patterns of influenza activity occurred in temperate climate Southern Hemisphere countries ( 3 ). Influenza activity began to increase in late April in the temperate countries of South America, late May in Southern Africa, early June in New Zealand, and early July in Australia. Influenza activity peaked in mid-June in temperate South America, the beginning of July in Southern Africa and New Zealand, and in mid-August in Australia, although elevated activity continued through September in Southern Africa and Australia. Influenza A(H3N2) viruses predominated across the Southern Hemisphere countries, with some reported influenza B viruses cocirculating in temperate South America, New Zealand, and Australia. In temperate-climate countries of Europe and North America, influenza activity was low, with influenza B viruses predominating. In countries with tropical influenza seasonality, influenza activity levels and the predominant virus varied by country. In Central America and the Caribbean, activity was low and influenza A(H3N2) and influenza B viruses predominated. In tropical South America, influenza activity decreased from May 21 through September 23; influenza A(H3N2) viruses predominated with some influenza B viruses reported. Sporadic influenza virus detections were reported in Eastern and Western Africa, with influenza A(H1N1)pdm09, influenza A(H3N2), and influenza B viruses cocirculating. In Eastern Asia, high levels of influenza activity were reported in Southern China, Hong Kong special administrative region (SAR), and Taiwan beginning in July, peaked in mid-August, and decreased through September 23; influenza A(H3N2) viruses predominated. In Southern Asia, influenza A(H1N1)pdm09 viruses predominated, with elevated activity reported in India, Nepal, and the Maldives. Influenza activity in Southeast Asia was elevated in August and September. Influenza A(H1N1)pdm09 viruses predominated in the Philippines and Myanmar. Influenza A(H3N2), influenza A(H1N1)pdm09, and influenza B viruses cocirculated in Singapore, and influenza A(H1N1)pdm09 and influenza B viruses cocirculated in Vietnam. During May 23–September 13, WHO reported 100 laboratory-confirmed human infections with avian influenza viruses, all from China, including 99 Asian lineage avian influenza A(H7N9) infections, and one influenza A(H9N2) infection. ¶¶¶ A total of 764 human infections, including 283 (37%) deaths, with Asian lineage avian influenza A(H7N9) virus were reported to WHO from more provinces, regions, and municipalities in China during the fifth epidemic than in the previous four epidemics combined ( 4 ). Genetic and Antigenic Characterization of Influenza Viruses The 2017–18 influenza vaccine virus components were selected in March 2017, during one of two biannual WHO-sponsored vaccine consultation meetings to review influenza data generated by GISRS laboratories. The recommended Northern Hemisphere 2017–18 trivalent influenza vaccine composition consists of an A/Michigan/45/2015 (H1N1)pdm09-like virus, an A/Hong Kong/4801/2014 (H3N2)-like virus, and a B/Brisbane/60/2008-like (B/Victoria lineage) virus. An additional influenza B virus (B/Phuket/3073/2013-like [B/Yamagata lineage]) was recommended for quadrivalent vaccines.**** These recommendations reflect an update to the A(H1N1)pdm09 virus component to a more contemporary influenza A(H1N1)pdm09 virus (an A/California/7/2009 (H1N1)pdm09-like virus was replaced with an A/Michigan/45/2015 (H1N1)pdm09-like virus), compared with the recommendation for the Northern Hemisphere 2016–2017 influenza season and are the same as the vaccine virus recommendations made for the 2017 Southern Hemisphere influenza vaccine. Most influenza vaccines licensed in the United States, with the exception of cell culture–based inactivated influenza vaccine (ccIIV4) and recombinant influenza vaccines (RIV3 and RIV4) are produced through propagation of candidate vaccine viruses (CVVs) in eggs. Historically, CVVs provided to manufacturers have been egg-derived. Egg propagation of influenza viruses, particularly influenza A(H3N2) viruses, often leads to genetic changes that might have antigenic implications. The vaccine viruses selected for the Northern Hemisphere 2017–18 vaccine were representative of most, but not all, circulating influenza viruses at that time, and had the fewest and least substantial egg-adapted changes. In August 2016, the Food and Drug Administration approved the use of cell-derived CVVs for inclusion in ccIIV4. †††† For the 2017–18 season, the influenza A(H3N2) component of this vaccine is manufactured using a cell-derived CVV. The other components of this vaccine are manufactured using egg-derived CVVs. Production of influenza vaccines using cell-grown CVVs and cell-based technology can circumvent antigenic changes that might be associated with egg propagation, particularly for influenza A(H3N2) viruses. §§§§ Data obtained from antigenic characterization are important in the assessment of the similarity between reference vaccine viruses and circulating viruses. In vitro antigenic characterization data acquired through hemagglutination inhibition (HI) assays or virus neutralization assays are used to assess whether genetic changes in circulating viruses affect antigenicity, which could affect vaccine effectiveness. Since the 2014–15 season, many influenza A(H3N2) viruses lack sufficient hemagglutination titers for antigenic characterization using hemagglutination inhibition assays. Therefore, representative influenza A(H3N2) viruses are selected for antigenic characterization using the virus neutralization focus reduction assay to assess the ability of various antisera to neutralize infectivity of the test viruses. For nearly all influenza-positive surveillance samples received by CDC, next generation sequencing (NGS), which employs genomic enrichment practices ( 5 – 7 ), adapted by CDC, Nextera library preparation (Illumina, San Diego, California) and NGS using MiSeq (Illumina, San Diego, California), is performed to determine the genetic identity of circulating viruses. The genomic data are analyzed and submitted to public databases (GenBank or GISAID EpiFlu). CDC has antigenically or genetically characterized 877 influenza viruses collected and submitted by U.S. and international laboratories since May 21, 2017, including 117 influenza A(H1N1)pdm09 viruses, 495 influenza A(H3N2) viruses, and 265 influenza B viruses. Phylogenetic analysis of the HA genes from the A(H1N1)pdm09 viruses collected since May 21, 2017, showed that all but one were in subclade 6B.1, and one virus belonged to clade 6B (Figure 3). All A(H1N1)pdm09 viruses were antigenically similar (analyzed using HI with ferret antisera) to the 6B.1 virus A/Michigan/45/2015, the recommended influenza A(H1N1)pdm09 reference virus for the 2017 Southern Hemisphere and 2017–18 Northern Hemisphere influenza vaccines. FIGURE 3 Genetic characterization of U.S. and international viruses collected during May 21, 2017–September 23, 2017* * As of September 29, 2017. The figure above is a bar chart showing the genetic characterization of U.S. and international viruses collected during May 21, 2017–September 23, 2017. Four hundred ninety-five influenza A(H3N2) viruses collected globally since May 21, 2017, were sequenced, and phylogenetic analysis of the HA genes illustrated that multiple clades/subclades were cocirculating (Figure 3). The HA genes showed extensive diversity and belonged to clades 3C.2a or 3C.3a, with 3C.2a predominating (Figure 3). The 3C.2a and the 3C.2a1 subclade circulated in approximately equal proportions. A representative set of 153 influenza A(H3N2) viruses (51 international and 102 United States) were antigenically characterized, and most (97%) A(H3N2) viruses were well-inhibited (reacting at titers of less than or equal to fourfold of the homologous virus titer) by ferret antisera raised against A/Michigan/15/2014 (3C.2a), a cell propagated A/Hong Kong/4801/2014-like reference virus representing the A(H3N2) component of the 2017 Southern Hemisphere and 2017–18 Northern Hemisphere influenza vaccines. A smaller proportion (33%) of influenza A(H3N2) viruses were well-inhibited by antiserum raised against egg-propagated A/Hong Kong/4801/2014 reference virus representing the A(H3N2) vaccine component, which is likely because of egg-adaptive amino acid changes in the HA of the egg-propagated virus. A total of 85 influenza B/Victoria-lineage viruses were phylogenetically analyzed, and all HA genes belonged to genetic clade V1A, the same genetic clade as the vaccine reference virus, B/Brisbane/60/2008. However, two deletion subclades were detected in 2017. One subclade has a 6-nucleotide deletion (encoding amino acids 162 and 163) and the other subclade has a 9-nucleotide deletion (encoding amino acids 162, 163 and 164). The 162–163 double deletion in the HA was detected in viruses circulating in multiple countries, with the majority identified in the United States, although the three viruses with 162–164 triple deletion were only detected in Hong Kong SAR, China. Thirty-nine (72%) B/Victoria lineage viruses were well-inhibited by ferret antisera raised against MDCK-propagated B/Brisbane/60/2008 reference virus, representing the B/Victoria lineage component of the 2017 Southern Hemisphere and 2017–2018 Northern Hemisphere influenza vaccines. However, 28% of B/Victoria lineage viruses reacted poorly with ferret antisera raised against MDCK-propagated B/Brisbane/60/2008, which correlated with the 162–163 double deletion and the 162–164 triple deletion in the HA. Phylogenetic analysis of 180 influenza B/Yamagata-lineage viruses indicate that the HA genes belonged to clade Y3 (Figure 3). A total of 99 representative influenza B/Yamagata-lineage viruses (59 international and 40 United States) were antigenically characterized, and all were antigenically similar to B/Phuket/3073/2013, the reference vaccine virus representing the influenza B/Yamagata-lineage component of the 2017 Southern Hemisphere and 2017–18 Northern Hemisphere quadrivalent vaccines. Composition of the 2018 Southern Hemisphere Influenza Vaccine The WHO recommendations for influenza vaccine composition for the 2018 Southern Hemisphere season were made at the WHO Vaccine Consultation meeting September 25–28, 2017, in Melbourne, Australia. The recommended components for the 2018 Southern Hemisphere influenza trivalent vaccines are an A/Michigan/45/2015 (H1N1)pdm09-like virus, an A/Singapore/INFIMH-16-0019/2016 (H3N2)-like virus, and a B/Phuket/3073/2013-like (B/Yamagata lineage) virus ( 8 ). For quadrivalent vaccines, an additional component, B/Brisbane/60/2008-like (B/Victoria lineage) virus, is recommended ( 8 ). This represents a change in the influenza A(H3N2) component and a change in the influenza B lineage included in the trivalent vaccine compared with the composition of the 2017 Southern Hemisphere and 2017–18 Northern Hemisphere influenza vaccine formulation. The H3N2 component was updated to address the egg-adaptive changes that occurred with the egg-propagated A/Hong Kong/4801/2014 reference virus and to better represent genetic changes seen in recently circulating H3N2 viruses. Antiviral Resistance of Influenza Viruses The WHO Collaborating Center for Surveillance, Epidemiology, and Control of Influenza at CDC tested 486 influenza virus specimens collected during May 21–September 23, 2017, from the United States and worldwide for resistance to the influenza neuraminidase inhibitor antiviral medications currently approved for use against seasonal influenza: oseltamivir, zanamivir, and peramivir. A total of 75 influenza A(H1N1)pdm09 viruses (37 international and 38 United States) were tested, and all were sensitive to these drugs. All 231 influenza A(H3N2) viruses (60 international and 171 United States) and all 180 influenza B viruses (98 international and 82 United States) tested were also sensitive to all three recommended antiviral medications. High levels of resistance to the adamantanes (amantadine and rimantadine) persist among influenza A(H1N1)pdm09 and influenza A(H3N2) viruses. Adamantane drugs continue not to be recommended for use against influenza at this time. Discussion During May 21–September 23, 2017, influenza A(H3N2), influenza A(H1N1)pdm09, and influenza B viruses co-circulated worldwide. In the United States, influenza B viruses predominated from late May through late June. Influenza A viruses were most commonly reported beginning in early July. The majority of the influenza viruses collected from the United States and other countries during that time were characterized antigenically and genetically as being similar to the cell-grown reference viruses representing the 2017 Southern Hemisphere and 2017–18 Northern Hemisphere influenza vaccine viruses. Antigenic and genetic characterization of circulating influenza viruses can give an indication of the influenza vaccine's ability to produce an immune response against the wide array of influenza viruses cocirculating, but vaccine effectiveness studies are needed to determine how much protection has been provided to the population by vaccination. Influenza A(H1N1)pdm09 viruses were detected at low levels from May 21 to September 23, and virus characterization data indicate no substantial genetic or antigenic changes, even among viruses from regions that experienced higher A(H1N1)pdm09 activity. Influenza A(H3N2) viruses have predominated in many countries in the Southern Hemisphere and in the United States since early July. Virus characterization data suggest extensive genetic diversity among circulating viruses, but limited evidence of substantial antigenic drift. To date, a predominant subclade of A(H3N2) viruses with substantial antigenic drift has yet to emerge, and extensive genetic variation exists in the circulating virus population. Among the influenza B viruses for which lineage was determined, influenza B/Yamagata viruses predominated across the United States from May 21 through September 23, and virus characterization data indicate no substantial genetic or antigenic changes. Two subgroups of antigenically distinct influenza B/Victoria viruses, represented by the double or triple deletion viruses, were detected; the majority of the double deletion viruses were identified in the United States, while all three triple deletion viruses were identified only in Hong Kong SAR, China. Nevertheless, such antigenically distinct viruses represented a minority of B/Victoria viruses circulating globally during this period. Close monitoring of these viruses is required to better assess their potential impact on public health. Although influenza B viruses circulate throughout the influenza season, they frequently circulate later in the season than do influenza A viruses and often result in a second peak of influenza activity, often in the late winter and spring in the United States and other Northern Hemisphere countries ( 3 ). Annual influenza vaccination is the best method for preventing influenza and its potentially severe complications ( 9 ). In the United States, annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. Annual influenza vaccination is recommended regardless of whether the vaccine composition has changed because immunity from vaccination wanes over time and might decline below protective levels after one season. Optimally, vaccination should occur before the onset of influenza activity in the community. If possible, vaccination should be offered by the end of October and should continue to be offered as long as influenza viruses are circulating and unexpired vaccine is available. Children aged 6 months through 8 years who require 2 doses should receive their first dose as soon as possible after vaccine becomes available, and the second dose ≥4 weeks later. For 2017-18 season, manufacturers have projected they will supply the United States with as many as 151 to 166 million doses of injectable influenza vaccine; approximately 119 million of this will be quadrivalent vaccine. As of September 15, 2017, approximately 73 million doses had already been distributed. Multiple influenza vaccines are approved and recommended for use and are being distributed during the 2017–18 season, including egg-based trivalent and quadrivalent inactivated influenza vaccines (IIV3 and IIV4), adjuvanted trivalent egg-based inactivated influenza vaccines (aIIV3), high-dose trivalent egg-based inactivated influenza vaccines (HD-IIV3), quadrivalent cell culture–based inactivated influenza vaccines (ccIIV4), and recombinant trivalent and quadrivalent influenza vaccines (RIV3 and RIV4). Two available intramuscular vaccines are approved for administration by jet injector for persons aged 18 through 64 years. One IIV4 formulation is approved for intradermal administration. There is no preferential recommendation for one licensed and recommended influenza vaccine product over another for persons for whom more than one licensed, recommended product is available ( 9 ). Currently available influenza vaccines, with the exceptions of RIV3, RIV4, and ccIIV4, are prepared by propagation of virus in embryonated eggs ( 9 ). Egg propagation of influenza A(H3N2) viruses often leads to genetic changes that have antigenic implications. For the 2017–18 season inactivated vaccines, all influenza A(H1N1) and A(H3N2) and both influenza B components will be egg-derived, with the exception of ccIIV4, for which the influenza A(H3N2) virus component will, for the first time, be a cell-derived vaccine virus component ( 9 ). This represents a first step toward producing a totally egg-independent inactivated virus vaccine. Recombinant technology is used in the production of RIV3 and RIV4; therefore they are manufactured without the use of influenza viruses or eggs. The use of egg-independent vaccine technologies is likely to provide vaccines that more precisely represent the antigenic characteristics of circulating viruses and have the potential to offer improved protection. Because of the low effectiveness of live attenuated intranasal influenza vaccine (LAIV4) against influenza A(H1N1)pdm09 viruses in the United States during the 2013–14 and 2015–16 seasons, for the 2017–18 season, the Advisory Committee on Immunization Practices and CDC renewed the recommendation that LAIV4 should not be used ( 9 ). Although vaccination is the best method for preventing and reducing the impact of influenza, antiviral medications provide a valuable adjunct. Treatment with influenza antiviral medications as early as possible in the course of illness is recommended for patients with confirmed or suspected influenza (either seasonal influenza or novel influenza virus infection) who have severe, complicated, or progressive illness; who require hospitalization; or who are at high risk for influenza-related complications ¶¶¶¶ ( 10 ). Treatment is most effective when given early in the illness, especially within 48 hours of illness onset; providers should not delay treatment until test results become available and should not rely on insensitive assays such as found with some rapid antigen detection influenza diagnostic tests to determine treatment decisions ( 10 ). Fifty-one infections with variant influenza viruses were reported from five states during summer 2017. Most of these infections occurred in children with prior direct contact with pigs at agricultural fairs, highlighting the importance of preventive actions,***** especially for young children or persons at high risk for serious influenza complications. Although community transmission of these viruses has not been identified, the potential for them to develop the ability to transmit efficiently from person to person remains a concern. Testing for seasonal influenza viruses and monitoring for novel influenza A virus infections should continue year-round. Health care providers also are reminded to consider novel influenza virus infections in persons with influenza-like illness and swine or poultry exposure, or with severe acute respiratory infection after travel to areas where avian influenza viruses have been detected. Providers should alert the local public health department if novel influenza virus infection is suspected. Clinical laboratories using a commercially available influenza diagnostic assay that includes influenza A virus subtype determination should contact their state public health laboratory to facilitate transport and additional testing of any specimen that is positive for influenza A, but for which the subtype cannot be determined. Public health laboratories should immediately send influenza A virus specimens that they cannot subtype using standard methods to CDC and submit all specimens that are otherwise unusual as soon as possible after identification. Early identification and investigation of human infections with novel influenza A viruses are critical to ensure timely risk assessment so that appropriate public health measures can be taken. Influenza surveillance reports for the United States are posted online weekly (https://www.cdc.gov/flu/weekly). Additional information regarding influenza viruses, influenza surveillance, influenza vaccine, influenza antiviral medications, and novel influenza A infections in humans is available at https://www.cdc.gov/flu. Summary What is already known about this topic? CDC collects, compiles, and analyzes data on influenza activity year-round in the United States. Timing of influenza activity and predominant circulating influenza viruses vary by season. What is added by this report? Worldwide, influenza activity during May 21–September 23, 2017, followed typical seasonality and in the United States overall, low levels of seasonal influenza activity were detected. The majority of influenza viruses genetically and antigenically characterized at CDC were similar to the reference viruses representing the recommended components for the 2017–18 vaccine. A small subset of antigenically distinct influenza B/Victoria viruses was detected. What are the implications for public health practice? In the United States, an annual influenza vaccination is recommended for all persons aged ≥6 months and can reduce the likelihood of becoming ill with influenza and transmitting the virus to others. Annual influenza vaccination offers optimal protection regardless of whether the vaccine composition has changed since the previous season, because immunity wanes over time. Although vaccination is the best method for preventing and reducing the impact of influenza, antiviral medications are an important adjunct. Early treatment with influenza antiviral medications is recommended for patients with confirmed or suspected influenza (either seasonal influenza or novel influenza virus infection) who have severe, complicated, or progressive illness; who require hospitalization; or who are at high risk for influenza-related complications. Testing for seasonal influenza viruses and monitoring for novel influenza A virus infections should continue year-round.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: not found

          Seasonality, timing, and climate drivers of influenza activity worldwide.

          Although influenza is a vaccine-preventable disease that annually causes substantial disease burden, data on virus activity in tropical countries are limited. We analyzed publicly available influenza data to better understand the global circulation of influenza viruses. We reviewed open-source, laboratory-confirmed influenza surveillance data. For each country, we abstracted data on the percentage of samples testing positive for influenza each epidemiologic week from the annual number of samples testing positive for influenza. The start of influenza season was defined as the first week when the proportion of samples that tested positive remained above the annual mean. We assessed the relationship between percentage of samples testing positive and mean monthly temperature with use of regression models. We identified data on laboratory-confirmed influenza virus infection from 85 countries. More than one influenza epidemic period per year was more common in tropical countries (41%) than in temperate countries (15%). Year-round activity (ie, influenza virus identified each week having ≥ 10 specimens submitted) occurred in 3 (7%) of 43 temperate, 1 (17%) of 6 subtropical, and 11 (37%) of 30 tropical countries with available data (P = .006). Percentage positivity was associated with low temperature (P = .001). Annual influenza epidemics occur in consistent temporal patterns depending on climate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Update: Increase in Human Infections with Novel Asian Lineage Avian Influenza A(H7N9) Viruses During the Fifth Epidemic — China, October 1, 2016–August 7, 2017

            Among all influenza viruses assessed using CDC’s Influenza Risk Assessment Tool (IRAT), the Asian lineage avian influenza A(H7N9) virus (Asian H7N9), first reported in China in March 2013,* is ranked as the influenza virus with the highest potential pandemic risk ( 1 ). During October 1, 2016–August 7, 2017, the National Health and Family Planning Commission of China; CDC, Taiwan; the Hong Kong Centre for Health Protection; and the Macao CDC reported 759 human infections with Asian H7N9 viruses, including 281 deaths, to the World Health Organization (WHO), making this the largest of the five epidemics of Asian H7N9 infections that have occurred since 2013 (Figure 1). This report summarizes new viral and epidemiologic features identified during the fifth epidemic of Asian H7N9 in China and summarizes ongoing measures to enhance pandemic preparedness. Infections in humans and poultry were reported from most areas of China, including provinces bordering other countries, indicating extensive, ongoing geographic spread. The risk to the general public is very low and most human infections were, and continue to be, associated with poultry exposure, especially at live bird markets in mainland China. Throughout the first four epidemics of Asian H7N9 infections, only low pathogenic avian influenza (LPAI) viruses were detected among human, poultry, and environmental specimens and samples. During the fifth epidemic, mutations were detected among some Asian H7N9 viruses, identifying the emergence of high pathogenic avian influenza (HPAI) viruses as well as viruses with reduced susceptibility to influenza antiviral medications recommended for treatment. Furthermore, the fifth-epidemic viruses diverged genetically into two separate lineages (Pearl River Delta lineage and Yangtze River Delta lineage), with Yangtze River Delta lineage viruses emerging as antigenically different compared with those from earlier epidemics. Because of its pandemic potential, candidate vaccine viruses (CVV) were produced in 2013 that have been used to make vaccines against Asian H7N9 viruses circulating at that time. CDC is working with partners to enhance surveillance for Asian H7N9 viruses in humans and poultry, to improve laboratory capability to detect and characterize H7N9 viruses, and to develop, test and distribute new CVV that could be used for vaccine production if a vaccine is needed. FIGURE 1 Confirmed Asian lineage avian influenza A(H7N9) virus infections of humans reported to the World Health Organization (N = 1,557),* by month of illness onset — China,† February 19, 2013–August 7, 2017 Source: Publically released infections in Disease Outbreak News (http://www.who.int/csr/don/en/) or Human-Animal Interface Monthly Report (http://www.who.int/influenza/human_animal_interface/en/). * Date of onset missing for six infections. † One case was exported to Malaysia (January 2014) and two to Canada (January 2015). The figure above is a histogram showing confirmed Asian lineage avian influenza A(H7N9) virus infections of humans reported to the World Health Organization (N = 1,557), by month of illness onset in China during February 19, 2013–August 7, 2017. Epidemiologic data were collected from the WHO Disease Outbreak News † and Influenza Risk Assessment summaries, § and from recent publications. Genetic and virus characterization data were collected from the publically accessible Global Initiative on Sharing All Influenza Data and GenBank databases. ¶ Nucleotide sequence alignments of hemagglutinin (HA) and neuraminidase (NA) genes were created and used to generate phylogenetic trees for lineage determination. Amino acid changes in fifth-epidemic viruses were identified through comparisons with CVVs produced using 2013 Asian H7N9 virus sequences, and identification of viruses as either LPAI or HPAI was accomplished by analysis of the HA cleavage site. CDC assessed the antigenic properties of virus isolates using the hemagglutination inhibition (HI) assay employing a panel of reference ferret antisera that includes antisera raised to LPAI Yangtze River Delta and Pearl River Delta fifth-epidemic viruses, HPAI H7N9 viruses, and the 2013 CVVs. The extent of cross-reactivity with 2013 CVVs and viruses from previous epidemics was assessed. Epidemiology During March 31, 2013–August 7, 2017, a total of 1,557 human infections with Asian H7N9 viruses were reported; at least 605 (39%) of these infections resulted in death. All infections were either detected in mainland China, Hong Kong, and Macao, or associated with travel from mainland China (29 cases were exported to Malaysia, Canada, Hong Kong, Macao, and Taiwan). Infections were reported from more provinces, regions, and municipalities in China during the fifth epidemic (30) than during the first four epidemics combined (21) (Figure 2). Similar to epidemics 1–4, 70% of infections during the fifth epidemic occurred in men, and the median age was 57 years (range = 4–93 years); most occurred among persons with recent poultry exposure (90%) and resulted in severe respiratory illness (90%)** ( 2 ). Among the 759 reported infections during the fifth epidemic, 14 clusters of two or three persons with Asian H7N9 virus infections were reported to WHO, compared with an average of nine clusters in each of the previous epidemics (range = 4–11 clusters). FIGURE 2 Geographic distribution of Asian lineage avian influenza A(H7N9) virus infections of humans reported to the World Health Organization — China,* A) epidemic 5 (October 1, 2016–August 7, 2017) and B) epidemics 1–4 (March 2013–September 30, 2016) Source: Publically released infections in Disease Outbreak News (http://www.who.int/csr/don/en/) or Human-Animal Interface Monthly Report (http://www.who.int/influenza/human_animal_interface/en/). * Avian influenza A(H7N9) virus infections of humans reported in mainland China, Hong Kong, Macao, and Taiwan. The figure above is a map showing the geographic distribution of Asian lineage avian influenza A(H7N9) virus infections of humans reported to the World Health Organization in China during A) epidemic 5 (during October 1, 2016–August 7, 2017) and B) epidemics 1–4 (during March 2013–September 30, 2016). During the fifth epidemic, LPAI Asian H7N9 viruses acquired an HPAI mutation that causes increased morbidity and mortality in poultry. Ten of 33 provinces, regions, and municipalities in China reported HPAI Asian H7N9 viruses in poultry and environmental samples: Fujian, Guangdong, Guangxi, Hebei, Heilongjiang, Henan, Hunan, Inner Mongolia, Shaanxi, and Tianjin. †† Among the 759 human infections identified in the fifth epidemic, 27 were HPAI Asian H7N9 viruses (11 from Guangxi, eight from Guangdong, five from Hunan, one from Hebei and one from Shaanxi Provinces, and one from Taiwan) §§ ( 3 ). Human infections with HPAI Asian H7N9 viruses were significantly more likely to occur in rural areas, among persons with early hospital admission, and after exposure to sick or dead poultry, but were otherwise similar in their demographic and clinical characteristics to infections with LPAI Asian H7N9 viruses ( 3 , 4 ). Analysis of Virus Gene Sequences Analysis of HA gene sequences demonstrated two distinct Asian H7N9 virus lineages isolated from humans during the fifth epidemic: the Pearl River Delta lineage and Yangtze River Delta lineage ( 5 ). Among 166 fifth-epidemic Asian H7N9 virus HA gene sequences entered into Global Initiative on Sharing All Influenza Data and GenBank, 160 were from infected humans in mainland China, five were from Hong Kong, and one was from Taiwan. A total of 159 of the virus HA sequences were from the Yangtze River Delta lineage and seven were from the Pearl River Delta lineage, indicating the predominance of the Yangtze River Delta lineage. In addition, 35 (21%) of the 166 fifth-epidemic Asian H7N9 virus specimens and samples (27, 77% from human specimens and 8, 23% from environmental samples) with publicly available sequences had a four amino acid insertion in the cleavage site of the HA protein indicating a mutation found in HPAI viruses ( 6 ). NA gene sequence data were available for all 166 viruses collected during the fifth epidemic; 18 (10.8%) viruses (all from patients who were possibly treated with NA inhibitors) had genetic markers of reduced susceptibility to one or more NA inhibitors. All 166 viruses had the S31N mutation in the M2 protein, indicating resistance to amantadine and rimantadine, as was observed in previous Asian H7N9 epidemics ( 7 ). Analysis of Virus Surface Proteins HI testing of fifth-epidemic Yangtze River Delta lineage viruses, which accounted for the majority of available viruses, demonstrated significant antigenic differences compared with 2013 CVVs produced from 2013 Asian H7N9 viruses. ¶¶ Ferret antisera raised against the 2013 CVVs poorly inhibited hemagglutination of fifth-epidemic Yangtze River Delta lineage viruses compared with inhibition of viruses tested from previous epidemics. HI testing of HPAI Asian H7N9 viruses also indicated significant antigenic differences compared with 2013 CVVs. As part of a National Institutes of Health trial, sera from adults who received vaccine produced using a 2013 Asian H7N9 CVV showed reduced cross-reactive HI and neutralizing antibody titers to fifth-epidemic Yangtze River Delta lineage and HPAI viruses, compared with titers to 2013 H7N9 viruses ( 8 ). Discussion The fifth annual epidemic of Asian H7N9 in China is marked by extensive geographic spread in poultry and in humans. The number of human infections reported in the fifth epidemic is almost as many as were reported during the previous four epidemics combined. The consistent epidemiology combined with a similar number of clusters suggests that the increased number of human infections appears to be associated with wider geographic spread and higher prevalence of Asian H7N9 viruses among poultry rather than any increased incidence of poultry-to-human or human-to-human spread. Furthermore, surveillance and testing have remained relatively unchanged from the fourth to fifth epidemic. Although human infections with Asian H7N9 viruses from poultry are rare and no efficient or sustained human-to-human transmission has been detected, when human infections do occur, they are associated with severe illness and high mortality. Continued vigilance is important to identify changes in the virus that might have epidemiologic implications, such as increased transmission from poultry to humans or transmission between humans. CDC assesses the pandemic potential of novel influenza A viruses using the IRAT evaluation tool. The IRAT analysis process considers the properties of the specific virus, attributes of the population, and associated ecology and epidemiology to assess the potential pandemic risk posed to human health by each virus. In light of the increased number of human infections and virologic changes observed during the fifth epidemic, CDC carried out an IRAT assessment of the newly emerged Yangtze River Delta lineage LPAI Asian H7N9 virus. This virus lineage scored as having the highest potential pandemic risk (moderate to high) among viruses similarly evaluated using the IRAT ( 1 ). In March 2017, WHO recommended the development of new CVVs to match the antigenically distinguishable Yangtze River Delta viruses. The WHO Collaborating Center for the Surveillance, Epidemiology and Control of Influenza at CDC generated a new Asian H7N9 CVV derived from a Yangtze River Delta lineage LPAI Asian H7N9 virus, A/Hong Kong/125/2017 (an A/Hunan/02650/2016-like virus) ( 9 ). The WHO Collaborating Center for Reference and Research on Influenza in China developed a CVV from an HPAI Asian H7N9 virus, A/Guangdong/17SF003/2016. These CVVs, as well as others being developed by other WHO Collaborating Centers for Influenza, can be used for vaccine production, clinical trials, stockpiling and other pandemic preparedness purposes based on ongoing public health risk assessment. The Government of China remains committed to controlling the transmission of Asian H7N9 viruses from birds to humans, and to mitigating human infections. Specific control measures implemented by the Government of China in response to the pandemic threat include strategies to minimize spread through promoting large-scale farming and centralized slaughtering, improving poultry product cold chain transportation and storage at markets, routine live poultry market closures with cleaning and disinfection, and a national poultry vaccination program ( 10 ). To monitor and control human infections, the Government of China has issued prevention and control protocols that include guidance on enhanced surveillance for influenza-like illness, severe acute respiratory infection, and pneumonia of unknown etiology; case investigation and contact tracing; and diagnosis and treatment guidance. Additional strategies to monitor and control human infections include conducting field investigations to identify and monitor close contacts of confirmed human infections, and testing environmental samples from possible exposure locations such as live bird markets ( 10 ). The findings in this report are subject to at least three limitations. First, underreporting of human infections and deaths with Asian H7N9 viruses is likely, given that most are identified through a passive surveillance system. Second, delays between what has been officially reported to, and publically released by, WHO might occur; thus numbers in this report might vary from those reported by other sources. Finally, as more genetic and antigenic data become available, further evaluation and characterization of these viruses might reveal additional differences. The evolving Asian H7N9 viruses highlight the importance of rapid analysis and public sharing of sequence data to inform pandemic preparedness efforts. These data allow for the rapid identification of genetic changes known to be associated with antigenic variation, antiviral drug susceptibility, mammalian adaptation, virulence and transmissibility. Assessments based on sequence data have the potential to inform surveillance, guide allocation of outbreak response resources, and inform pandemic preparedness policy decisions, such as selecting viruses for CVV development, and purchasing of prepandemic vaccines and antivirals. CDC continues to partner with China CDC, together with other China government organizations, United Nations organizations, and the governments of surrounding countries to support surveillance for Asian H7N9 viruses in humans, poultry, and environmental samples from live bird markets, and to enhance laboratory capacity. CDC’s International Influenza Program also supports efforts by >50 countries to detect and respond to novel influenza A virus threats.*** Guidance for travelers to China is provided at the U.S. CDC Travelers’ Health website, (https://wwwnc.cdc.gov/travel/notices/watch/avian-flu-h7n9). Summary What is already known about this topic? The current Asian lineage avian influenza A(H7N9) virus (Asian H7N9) epidemic in China is the fifth and largest epidemic on record. What is added by this report? Human infections with Asian H7N9 virus were reported from more provinces, regions, and municipalities in China during the fifth epidemic than in the previous four epidemics combined. Because of antigenic variation between the Yangtze River Delta lineage viruses, the newly emerged high pathogenic Asian H7N9 viruses, and 2013 candidate vaccine viruses, new candidate vaccine viruses have been produced. What are the implications for public health practice? These candidate vaccine viruses, as well as others being developed by other World Health Organization Collaborating Centers for Influenza, could be used for vaccine production, clinical trials, stockpiling, and other pandemic preparedness purposes, based on ongoing public health risk assessment. CDC has partnered with China CDC, and other China government organizations, United Nations organizations, and surrounding countries to enhance surveillance and laboratory capacity to detect and respond to Asian H7N9 in animals and humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Influenza A virus molecular virology techniques.

              Molecular biological techniques for genomic analysis and for creation of recombinant viruses are critical tools in our efforts to understand and combat influenza A viruses. These molecular virology approaches are used in diagnostics, basic research, molecular epidemiology, bioinformatics, and vaccine development. The majority of the techniques used to study this segmented negative-sense RNA virus begin by purifying RNA from the virus, or infected cells, and converting it to cDNA, then to dsDNA, and amplifying that dsDNA using reverse transcription in combination with the polymerase chain reaction (RTPCR). The RTPCR amplicons can be probed, sequenced, or cloned into a variety of vectors for further analysis and to create recombinant influenza A viruses by plasmid-based reverse genetics. To accelerate the amplification and cloning process, we developed multi-segment-RTPCR (M-RTPCR) techniques that efficiently amplify the eight genomic viral RNA segments (vRNAs) of influenza A virus in a single reaction, irrespective of the virus strain. The M-RTPCR amplicons are ideal for nucleotide sequence analysis and cloning full-length vRNAs into plasmids or other vectors designed for protein expression or reverse genetics. Therefore, we also developed modified reverse-genetics plasmids that are designed to rapidly clone M-RTPCR products, or other full-length vRNA amplicons, using recombination-based techniques. The combination of M-RTPCR and recombination-based cloning confers sensitivity, speed, fidelity, and flexibility to the analysis and rescue of any strain/subtype of influenza A virus, without the need for in vitro propagation. The specific topics described in this chapter include purification of high-quality viral RNA, genomic amplification using two different M-RTPCR schemes, sequencing vRNA amplicons, and cloning vRNA amplicons into our modified reverse-genetics plasmids, or commercially available plasmids.
                Bookmark

                Author and article information

                Journal
                MMWR Morb Mortal Wkly Rep
                MMWR Morb. Mortal. Wkly. Rep
                WR
                MMWR. Morbidity and Mortality Weekly Report
                Centers for Disease Control and Prevention
                0149-2195
                1545-861X
                06 October 2017
                06 October 2017
                : 66
                : 39
                : 1043-1051
                Affiliations
                [1 ]Influenza Division, National Center for Immunization and Respiratory Diseases, CDC.
                Author notes
                Corresponding author: Lenee Blanton, lblanton@ 123456cdc.gov , 404–639–3747.
                Article
                mm6639a3
                10.15585/mmwr.mm6639a3
                5720887
                28981486
                c2fc8cb4-6207-4022-9a51-ad41e374370d

                All material in the MMWR Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.

                History
                Categories
                Full Report

                Comments

                Comment on this article