1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Predicting biotic interactions and their variability in a changing environment

      1 , 2 , 2 , 3 , 2 , 2 , 4
      Biology Letters
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d6024598e213">Global environmental change is altering the patterns of biodiversity worldwide. Observation and theory suggest that species' distributions and abundances depend on a suite of processes, notably abiotic filtering and biotic interactions, both of which are constrained by species' phylogenetic history. Models predicting species distribution have historically mostly considered abiotic filtering and are only starting to integrate biotic interaction. However, using information on present interactions to forecast the future of biodiversity supposes that biotic interactions will not change when species are confronted with new environments. Using bacterial microcosms, we illustrate how biotic interactions can vary along an environmental gradient and how this variability can depend on the phylogenetic distance between interacting species. </p>

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Making mistakes when predicting shifts in species range in response to global warming.

          Many attempts to predict the biotic responses to climate change rely on the 'climate envelope' approach, in which the current distribution of a species is mapped in climate-space and then, if the position of that climate-space changes, the distribution of the species is predicted to shift accordingly. The flaw in this approach is that distributions of species also reflect the influence of interactions with other species, so predictions based on climate envelopes may be very misleading if the interactions between species are altered by climate change. An additional problem is that current distributions may be the result of sources and sinks, in which species appear to thrive in places where they really persist only because individuals disperse into them from elsewhere. Here we use microcosm experiments on simple but realistic assemblages to show how misleading the climate envelope approach can be. We show that dispersal and interactions, which are important elements of population dynamics, must be included in predictions of biotic responses to climate change.
            Bookmark
            • Record: found
            • Abstract: found
            • Book: not found

            Ecological Niches and Geographic Distributions (MPB-49)

            This book provides a first synthetic view of an emerging area of ecology and biogeography, linking individual- and population-level processes to geographic distributions and biodiversity patterns. Problems in evolutionary ecology, macroecology, and biogeography are illuminated by this integrative view. The book focuses on correlative approaches known as ecological niche modeling, species distribution modeling, or habitat suitability modeling, which use associations between known occurrences of species and environmental variables to identify environmental conditions under which populations can be maintained. The spatial distribution of environments suitable for the species can then be estimated: a potential distribution for the species. This approach has broad applicability to ecology, evolution, biogeography, and conservation biology, as well as to understanding the geographic potential of invasive species and infectious diseases, and the biological implications of climate change. The book lays out conceptual foundations and general principles for understanding and interpreting species distributions with respect to geography and environment. Focus is on development of niche models. While serving as a guide for students and researchers, the book also provides a theoretical framework to support future progress in the field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Soil microbial community responses to multiple experimental climate change drivers.

              Researchers agree that climate change factors such as rising atmospheric [CO2] and warming will likely interact to modify ecosystem properties and processes. However, the response of the microbial communities that regulate ecosystem processes is less predictable. We measured the direct and interactive effects of climatic change on soil fungal and bacterial communities (abundance and composition) in a multifactor climate change experiment that exposed a constructed old-field ecosystem to different atmospheric CO2 concentration (ambient, +300 ppm), temperature (ambient, +3 degrees C), and precipitation (wet and dry) might interact to alter soil bacterial and fungal abundance and community structure in an old-field ecosystem. We found that (i) fungal abundance increased in warmed treatments; (ii) bacterial abundance increased in warmed plots with elevated atmospheric [CO2] but decreased in warmed plots under ambient atmospheric [CO2]; (iii) the phylogenetic distribution of bacterial and fungal clones and their relative abundance varied among treatments, as indicated by changes in 16S rRNA and 28S rRNA genes; (iv) changes in precipitation altered the relative abundance of Proteobacteria and Acidobacteria, where Acidobacteria decreased with a concomitant increase in the Proteobacteria in wet relative to dry treatments; and (v) changes in precipitation altered fungal community composition, primarily through lineage specific changes within a recently discovered group known as soil clone group I. Taken together, our results indicate that climate change drivers and their interactions may cause changes in bacterial and fungal overall abundance; however, changes in precipitation tended to have a much greater effect on the community composition. These results illustrate the potential for complex community changes in terrestrial ecosystems under climate change scenarios that alter multiple factors simultaneously.
                Bookmark

                Author and article information

                Journal
                Biology Letters
                Biol. Lett.
                The Royal Society
                1744-9561
                1744-957X
                May 2016
                May 31 2016
                May 2016
                May 31 2016
                : 12
                : 5
                : 20151073
                Affiliations
                [1 ]Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
                [2 ]Institut des Sciences de l'Evolution, UMR 5554, Université de Montpellier, CNRS, IRD, EPHE, CC 065, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
                [3 ]BioProtection Research Centre, Lincoln University, Lincoln, Canterbury, New Zealand
                [4 ]MARBEC (MARine Biodiversity Exploitation and Conservation), UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, CC 093, 34095 Montpellier Cedex 5, France
                Article
                10.1098/rsbl.2015.1073
                4892238
                27220858
                c2fe9e26-2410-436d-978f-098470c155ee
                © 2016
                History

                Comments

                Comment on this article